• Title/Summary/Keyword: Nitric oxide synthase(NOS)

Search Result 1,144, Processing Time 0.028 seconds

Effects of NO Synthase Inhibitor on Responsiveness of Dorsal Horn Neurons in Neuropathic Pain Animal Model (신경병성 통증모델쥐에서 산화질소합성효소 억제제가 척수후각세포의 활성도에 미치는 영향)

  • Leem, Joong-Woo;Gwak, Young-Seob;Chung, Seung-Soo;Lee, Kyu-Rae;Yoon, Duck-Mi;Nam, Taick-Sang
    • The Korean Journal of Pain
    • /
    • v.13 no.1
    • /
    • pp.19-30
    • /
    • 2000
  • Background: Partial nerve injury to a peripheral nerve may induce the development of neuropathic pain which is characterized by symptoms such as spontaneous burning pain, allodynia and hyperalgesia. Though underlying mechanism has not fully understood, sensitization of dorsal horn neurons may contribute to generate such symptoms. Nitric oxide acts as an inter- and intracellular messenger in the nervous system and is produced from L-arginine by nitric oxide synthase (NOS). Evidence is accumulating which indicate that nitric oxide may mediate nociceptive information transmission. Recently, it has been reported that NOS inhibitor suppresses neuropathic pain behavior in an neuropathic pain animal model. This study was conducted to determine whether nitric oxide could be involved in the sensitization of dorsal horn neurons in neuropathic animal model. Methods: Neuropathic animal model was made by tightly ligating the left L5 and L6 spinal nerves and we examined the effects of iontophoretically applied NOS inhibitor (L-NAME) on the dorsal horn neuron's responses to mechanical stimuli within the receptive fields. Results: In normal animals, NOS inhibitor (L-NAME) specifically suppressed the responses to the noxious mechanical stimuli. In neuropathic animals, the dorsal horn neuron's responses to mechanical stimuli were enhanced and NOS inhibitor suppressed the dorsal horn neuron's enhanced responses to non-noxious stimuli as well as those to noxious ones. Conclusions: These results suggest that nitric oxide may mediate nociceptive transmission in normal animal and also mediate sensitization of dorsal horn neurons in neuropathic pain state.

  • PDF

Coupling Efficiencies of m1, m3 and m5 Muscarinic Receptors to the Stimulation of Neuronal Nitric Oxide Synthase

  • Park, Sun-Hye;Lee, Seok-Yong;Cho, Tai-Soon
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.04a
    • /
    • pp.207-207
    • /
    • 1996
  • Through molecular cloning, five muscarinic receptors have been identified. The muscarinic receptors can be generally grouped according to their coupling to either stimulation of phospholipase C (m1, m3, and m5) or the inhibition of adenylate cyclase (m2 and m4). Each m1, m3, and m5 receptors has the additional potential to couple to the activation of phospholipase A$_2$, C, and D, tyrosine kinase, and the mobilization of Ca$\^$2+/. However, the differences in coupling efficiencies to different second messenger systems between these receptors have not been studied well. Ectopic expression of each of these receptors in mammalian cells has provided the opportunity to evaluate the signal transduction of each in some detail. In this work we compared the coupling efficiencies of the m1, m3 and m5 muscarinic receptors expressed in chinese hamster ovary (CHO) cells to the Ca$\^$2+/ mobilization and the stimulation of neuronal nitric oxide synthase (nNOS). Because G protein/PLC/PI turnover/[(Ca$\^$2+/])i/NOS pathway was supposed as a main pathway for the production of nitric oxide via muscarinic receptors, we studied on ml, m3 and m5 receptors. Stimulation of guanylate cyclase activity in detector neuroblastoma cells was used as an index of generation nitric oxide (NO) in CHO cells. The agonist carbachol increased the cGMP formation and the intracellular [Ca$\^$2+/] in concentration dependent manner in three types of receptors and the increased cGMP formation was significantly attenuated by scavenger of NO or inhibitor of NOS. m5 receptors was most efficiently coupled to stimulation of nNOS, And, the coupling efficiencies to the stimulation of neuronal nitric oxide synthase in three types of receptors were parallel with them to the Ca$\^$2+/ mobilization.

  • PDF

p66shc Adaptor Protein Suppresses the Activation of Endothelial Nitric Oxide Synthase in Mouse Embryonic Fibroblasts

  • Lee, Sang-Ki;Kim, Young-Shin;Kim, Cuk-Seong;Son, Sook-Jin;Yoo, Dae-Goon;Lee, Kwon-Ho;Lee, Sang-Do;Park, Jin-Bong;Jeon, Byeong-Hwa
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.3
    • /
    • pp.155-159
    • /
    • 2006
  • Among the Shc proteins, p66shc is known to be related to oxidative stress responses and regulation of the production of reactive oxygen species (ROS). The present study was undertaken to investigate the role of p66shc on endothelial nitric oxide synthase (eNOS) activity in the mouse embryonic fibroblasts (MEFs). When wild type (WT) or p66shc (-/-) MEFs were transfected with full length of eNOS cDNA, the expression and activity of eNOS protein were higher in the p66shc (-/-) MEFs. These phenomena were reversed by reconstitution of p66shc cDNA transfection in the p66shc (-/-) MEFs. The basal superoxide production in the p66shc (-/-) MEFs was not significantly different from that of WT of MEFs. However, superoxide production induced by NADPH in the p66shc (-/-) MEF was lesser than that in WT MEFs. When compared with WT MEFs, cell lysate of p66shc (-/-) MEFs showed significantly increased H-ras activity without change of endogenous H-ras expression. Our findings suggest the pivotal role of p66shc adaptor protein played in inhibition of endothelial nitric oxide production via modulation of the expression and/or activity of eNOS protein.

The Effect of Needle Electrode Electrical Stimulation on the Change of neuronal Nitric Oxide Synthase Immunoreactive Cells in the periaqueductal area of the Rat (침전극 저주파 자극이 흰쥐 중뇌수도주위 회색질의 nNOS 면역반응세포 변화에 미치는 영향)

  • Kim, Su-Han;Kim, Ji-Sung;Song, Chi-Won
    • Journal of Korean Physical Therapy Science
    • /
    • v.10 no.2
    • /
    • pp.193-198
    • /
    • 2003
  • Acupuncture has been used as a clinical treatment in Oriental medicine for various diseases. In the present study was carried out to investigate the effects of acupuncture and electrical stimulation on the change neuronal nitric oxide synthase(nNOS) immunoreactive cells in the periaqueductal gray(PAG) area of the male SD rats. Enhanced expression of nNOS was detected in the dorsolateral-PAG(DL-PAG) area of rat with stress by fixed body, and acupuncture and needle electrode electrical stimulation groups at Hapgok like acupoint decreased the stress-induced enhancement in the expression of nNOS. The present results demonstrate that acupuncture and needle electrode electrical stimulation is effective in the modulation of expression of nNOS in the DL-PAG area under stress conditions.

  • PDF

Nitric Oxide-Mediated Cytotoxicity of Manganese in Basal Ganglia Neuronal Cells (대뇌 기저핵 신경세포에서 Nitric Oxide를 매개로 한 망간의 세포독성)

  • Jung, Yong-Wook;Bae, Jae-Hoon;Song, Dae-Kyu;Park, Won-Kyun;Ko, Bok-Hyun;Kim, Doo-Hie;Shin, Dong-Hoon
    • Journal of Preventive Medicine and Public Health
    • /
    • v.32 no.4
    • /
    • pp.459-466
    • /
    • 1999
  • Objectives:eurotoxicity is mediated by nitric oxide(NO) in the rat primary neuronal cultures and assess the effect of $Mn^{2+}$ on the N-methyl-D aspartate(NMDA) receptors. Methods: We have used 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)assay to examine the effect of cytotoxicity of $MnCl_2$ in neuronal cells , NO production was determined by measuring nirites, a stable oxidation product of NO. The neurons in the rat that contains neuronal nitric oxide synthase(nNOS) were examined by immunofluorescence and confocal microscopy. The effects of $Mn^{2+}$ on the NMDA receptors was assesed by the whole cell voltage clamp technique. Results: We showed that the NO release and NOS expression was increased with 500uM $MnCl_2$ treatment and an NOS inhibitors, $N^G-nitro-L-arginine$, prevented neurotoxicity elicited by manganese. In the electrophysiological study, $Mn^{2+}$ does not block or activate the NMDA receptors and not pass through the NMDA receptors in a neurons of basal ganglia. Conclusions: It is concluded that manganese neurotoxicity in basal ganglia was partially mediated by nitric oxide in the cell culture model.

  • PDF

Downregulation of inducible nitric oxide synthase expression by a ceramide analogue in RAW 264.7 murine macrophages

  • Park, Sung-Sik;Chulbu Yim;Kim, Mie-Young;Chun, Young-Jin
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.05a
    • /
    • pp.50-50
    • /
    • 2003
  • Nitric oxide (NO) has been studied and found to be an important intracellular modulator. The excess NO produced by the inducible nitric-oxide synthase (iNOS) is implicated in various inflammatory diseases and cellular injury. Inflammatory cytokines such as TNF- or IL-6 increase intracellular ceramide and ceramide may induce NO production and inflammation. (omitted)

  • PDF

Down-regulation of inducible nitric oxide synthase and tumor necrosis factor-a expression by Bisphenol A via nuclear factor-kB inactivation in macrophages

  • Kim, Ji-Young;Jeong, Hye-Gwang
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.293.2-293.2
    • /
    • 2002
  • Bisphenol A [BPA. 2.2-bis(4-hydroxyphenyl)propane] is reported to have estrogenic activity: however. its influence on cytokine production or immune system function remains unclear. In this study. we investigated the effects of BPA on the production of nitric oxide (NO) and tumor necrosis factor-a (TNF-a), and on the level of inducible nitric oxide synthase (iNOS) and TNF-a gene expression in mouse macrophages. BPA alone did not affect NO or TNF-a production. (omitted)

  • PDF

Effects of the Extract of Samjasan on the Nitric Oxide Synthase Activity and the Level of Lipid Peroxide in Penis of Rats (삼자산(三子散)이 흰쥐 음경조직의 Nitric Oxide Synthase 활성 및 과산화지질 함량에 미치는 영향)

  • We, Young-Taek;Park, Jong-Hyuck;Yoon, Cheol-Ho;Jeong, Ji-Cheon;Shin, Uk-Seob;Min, Gun-Woo
    • The Journal of Internal Korean Medicine
    • /
    • v.22 no.1
    • /
    • pp.53-61
    • /
    • 2001
  • Objectives : The following are the results of the experimental studies of Samjasan (SJS) extract on the nitric oxide synthase (NOS) activity and the level of lipid peroxide in the penises of rats. Methods : Cnidii Fructus, Cuscutae Semen, Schizandrae Fructus constitute SJS. 150 g of crushed crude drug was extracted with methyl alcohol, under reflux, for 24 hours, three times; the total extractive was evaporated under reduced pressure to give 28.6 g. Results : In vitro, the SJS extract didn't effect the activity of NOS. However, the SJS extract decreased the activities, the ratio of type conversion of xanthine oxidase, the levels of lipid peroxide, In vitro, after administration of the SJS extract to rats, the activities and ratio of type conversion of xanthine oxidase decreased, but the activity of NOS and the content of nitrite increased. Also, the levels of the superoxide anion radical and lipid peroxide decreased in the penises of rats. But, after administration of the SJS extract to rats, the levels of glutathione did not increase. The effects of the SJS extract did better as the dosage and the length of treatment increased. Conclusions : These results suggest that the SJS extract decreases the activities of free radical generating enzymes which form lipid peroxide and increases the NOS activity in the penises of rats. Therefore, the SJS extract is capable of improving of sexual ability in rats.

  • PDF

Regulation of LPS-induced Nitric Oxide Synthase Activity by Cigarette Smoke in Mouse Brain

  • Moon, Ja-Young;Lim, Heung-Bin;Sohn, Hyung-Ok;Lee, Young-Gu;Hyun, Hak-Chul;Shin, Hantae;Lee, Dong-Wook
    • Toxicological Research
    • /
    • v.22 no.3
    • /
    • pp.245-251
    • /
    • 2006
  • Nitric oxide(nitrogen monoxide, NO) plays important physiological roles, but excessive generation can be toxic. NO is present in cigarette smoke at up to 1,000 ppm, and probably represents one of the greatest exogenous sources of NO to which humans are exposed. We investigated whether cigarette smoking reduces the production of endogenous NO and whether it influences the action of lipopolysaccharide(LPS) to induce nitric oxide synthase activity in mouse brain. Mice(C57BL6/J) were exposed to cigarette smoke for 8 weeks. LPS was injected intraperitoneally in single or combination with the exposure to cigarette smoke. Six hours after the injection of LPS, mice were sacrificed and sera and brains were collected. Serum concentrations of nitrate and nitrite were not charged by 4-week smoke exposure, but were significantly increased by 6 and 8 weeks of smoke exposure. Interestingly, cigarette smoke reduced the elevation in serum nitrate and nitrite concentrations produced by LPS after 4-week smoking exposure. NO synthase(NOS) activity in brain was upregulated by LPS-administration. However, cigarette smoke exposure remarkably and consistently decreased the LPS-induced activity in mouse brain. This result suggests that cigarette smoking may affect against overproduction of the endogenous NO by LPS through the inhibition of NOS activity induced by LPS in brain or by modulation of the LPS action for the induction of NOS activity. We also suggest the possibility that the exogenous NO evolved in cigarette smoke enables feedback inhibition of NOS activity or other possibility that it attenuates the toxicity of endotoxin LPS in vivo by unknown mechanisms, which should be further studied.

The Effects of Endogenously and Exogenously Induced Nitric Oxides on the Nociperception of Rats (내.외인성으로 유도된 Nitric Oxide가 흰쥐의 통각전달에 미치는 효과)

  • 방준석;류정수;신창열;양성준;송현주;박전희;제현동;손의동;허인회
    • YAKHAK HOEJI
    • /
    • v.45 no.1
    • /
    • pp.116-124
    • /
    • 2001
  • Nitric oxide is a labile, gaseous, broad spectrum second messenger that used in various tissues and cells. If it is induced by endogenously and exogenously in the neuronal cells, it is able to mediate analgesia or hyperalgesia at the periphery and in the spinal level respectively. This dual role of nitric oxide in the sensory system is very intriguing but has not been fully understood yet. In this experiment, acetylcholine (300 $\mu$g/paw), sodium nitroprusside (600 $\mu$g/paw), and L-arginine (300 $\mu$g/paw) represented antinociceptive effect to noxious topical stimulus, but pronociceptive responses followed by spinally application (20$\mu$g/5$\mu$l, 10$\mu$g/3$\mu$l, 500$\mu$g/5$\mu$l respectively). Calcium ion is critical element which activates nitric oxide synthase, therefore verapamil (300 $\mu$g/paw) and NOS inhibitor (20 mg/kg, L-NAME or L-NOArg) are injected into right hind paw (i.pl.). When verapamil is combined with NOS inhibitors analgesic effects through NO-cGMP pathway are inhibited as compared with ACh alone. Diluted formalin (2.5%), when injected into rats'hind paw (0.05 ml), elicited a biphasic algesic responses and nitric oxide had an analgesic effect on both $A\delta$ and C sensory nerve fibers which manipulate the phases respective1y. Nitric oxides, which produced from constitutive nitric oxide synthase, activated cyclooxygenase-type I and then prostaglandins are produced from them. So, indomethacin and ibuprofen, inhibitors of COX$_1$enzyme, when pretreated intraperitoneally (100 mg/kg) could reduce the hyperalgesic state. From these results, it is possible to imagine that the intrathecally administered NO donors expressed hyperalgesia through both long-term potentiation mechanism and arachidonic acid-prostaglandin cascade.

  • PDF