• Title/Summary/Keyword: Nitrate signal

Search Result 16, Processing Time 0.033 seconds

Temporal Changes in N Assimilation and Metabolite Composition of Nitrate-Affected Tomato Plants

  • Sung, Jwakyung;Lee, Suyeon;Lee, Yejin;Kim, Rogyoung;Lee, Juyoung;Lee, Jongsik;Ok, Yongsik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.910-919
    • /
    • 2012
  • The role of inorganic nitrogen assimilation in the production of amino acids, organic acids and soluble sugars is one of the most important biochemical processes in plants, and, in order to achieve normally, nitrate uptake and assimilation is essential. For this reason, the characterization of nitrate assimilation and metabolite composition from leaves, roots and xylem sap of tomato (Solanum lycopersicum) was investigated under different nitrate levels in media. Tomato plants were grown hydroponically in liquid culture under five different nitrate regimes: deficient (0.25 and 0.75 mM $NO_3{^-}$), normal (2.5 mM $NO_3{^-}$) and excessive (5.0 and 10.0 mM $NO_3{^-}$). All samples, leaves, roots and xylem sap, were collected after 7 and 14 days after treatment. The levels of amino acids, soluble sugars and organic acids were significantly decreased by N-deficiency whereas, interestingly, they remained higher in xylem sap as compared with N-normal and -surplus. The N-excessive condition did not exert any significant changes in metabolites composition, and thus their levels were similar with N-normal. The gene expression and enzyme activity of nitrate reductase (NR), nitrite reductase (NIR) and glutamine synthetase (GS) were greatly influenced by nitrate. The data presented here suggest that metabolites, as a signal messenger, existed in xylem sap seem to play a crucial role to acquire nitrate, and, in addition, an increase in ${\alpha}$-ketoglutarate pathway-derived amino acids under N-deficiency may help to better understand plant C/N metabolism.

Research status of transcription factors involved in controlling gene expression by nitrate signaling in higher plants (고등식물의 질산시그널에 의한 유전자 발현제어 관련 전사인자의 연구현황)

  • Jung, Yu Jin;Park, Joung Soon;Go, Ji Yun;Lee, Hyo Ju;Kim, Jin Young;Lee, Ye Ji;Nam, Ki Hong;Cho, Yong-Gu;Kang, Kwon Kyoo
    • Journal of Plant Biotechnology
    • /
    • v.48 no.3
    • /
    • pp.124-130
    • /
    • 2021
  • Nitrate is an important nutrient and signaling molecule in plants that modulates the expression of many genes and regulates plant growth. In this study, we cover the research status of transcription factors related to the control of gene expression by nitrate signaling in higher plants. Nitrate reductase is a key enzyme in nitrogen assimilation, as it catalyzes the nitrate-to-nitrite reduction process in plants. A variety of factors, including nitrate, light, metabolites, phytohormones, low temperature, and drought, modulate the expression levels of nitrate reductase genes and nitrate reductase activity, which is consistent with the physiological role if. Recently, several transcription factors controlling the expression of nitrate reductase genes have been identified in higher plants. NODULE-INCEPTION-Like Proteins (NLPs) are transcription factors responsible for the nitrate-inducible expression of nitrate reductase genes. Since NLPs also control the nitrate-inducible expression of genes encoding the nitrate transporter, nitrite transporter, and nitrite reductase, the expression levels of nitrate reduction pathway-associated genes are coordinately modulated by NLPs in response to nitrate. Understanding the function of nitrate in plants will be useful to create crops with low nitrogen use.

An Automated Water Nitrate Monitoring System based on Ion-Selective Electrodes

  • Cho, Woo Jae;Kim, Dong-Wook;Jung, Dae Hyun;Cho, Sang Sun;Kim, Hak-Jin
    • Journal of Biosystems Engineering
    • /
    • v.41 no.2
    • /
    • pp.75-84
    • /
    • 2016
  • Purpose: In-situ water quality monitoring based on ion-selective electrodes (ISEs) is a promising technique because ISEs can be used directly in the medium to be tested, have a compact size, and are inexpensive. However, signal drift can be a major concern with on-line management systems because continuous immersion of the ISEs in water causes electrode degradation, affecting the stability, repeatability, and selectivity over time. In this study, a computer-based nitrate monitoring system including automatic electrode rinsing and calibration was developed to measure the nitrate concentration in water samples in real-time. Methods: The capabilities of two different types of poly(vinyl chloride) membrane-based ISEs, an electrode with a liquid filling and a carbon paste-based solid state electrode, were used in the monitoring system and evaluated on their sensitivities, selectivities, and durabilities. A feasibility test for the continuous detection of nitrate ions in water using the developed system was conducted using water samples obtained from various water sources. Results: Both prepared ISEs were capable of detecting low concentrations of nitrate in solution, i.e., 0.7 mg/L $NO_3-N$. Furthermore, the electrodes have the same order of selectivity for nitrate: $NO_3{^-}{\gg}HCO_3{^-}$ > $Cl^-$ > $H_2PO_4{^-}$ > $SO{_4}^{2-}$, and maintain their sensitivity by > 40 mV/decade over a period of 90 days. Conclusions: The use of an automated ISE-based nitrate measurement system that includes automatic electrode rinsing and two-point normalization proved to be feasible in measuring $NO_3-N$ in water samples obtained from different water sources. A one-to-one relationship between the levels of $NO_3-N$ measured with the ISEs and standard analytical instruments was obtained.

Experimental Study on Temperature Dependence of Nitrate Sensing using an ISE-based On-site Water Monitoring System

  • Jung, Dae-Hyun;Kim, Dong-Wook;Cho, Woo Jae;Kim, Hak-Jin
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.122-122
    • /
    • 2017
  • Recently, environmental problems have become an area of growing interests. In-situ monitoring of water quality is fundamental to most environmental applications. The accurate measurement of nitrate concentrations is fundamental to understanding biogeochemistry in aquatic ecosystems. Several studies have reported that one of the most feasible methods to measure nitrate concentration is the use of Ion Selective-electrodes (ISEs). The ISE application to water monitoring has several advantages, such as direct measurement methodology, high sensitivity, wide measurement range, low cost, and portability. However, the ISE methods may yield inconsistent results where there was a difference in temperature between the calibration and measurement solutions, which is associated with the temperature dependence of ionic activity coefficients in solution. In this study, to investigate the potential of using the combination of a temperature sensor and nitrate ISEs for minimizing the effect of temperature on real-time nitrate sensing in natural water, a prototype of on-site water monitoring system was built, mainly consisting of a sensor chamber, an array of 3 ISEs, an waterproof temperature sensor, an automatic sampling system, and an arduino MCU board. The analog signals of ISEs were obtained using the second-order Sallen-key filter for performing voltage following, differential amplification, and low pass filtering. The performance test of the developed water nitrate sensing system was conducted in a monitoring station of drinking water located in Jeongseon, Kangwon. A temperature compensation method based on two-point normalization was proposed, which incorporated the determination of temperature coefficient values using regression equations relating solution temperature and electrode signal determined in our previous studies.

  • PDF

Nitrate enhances the secondary growth of storage roots in Panax ginseng

  • Kyoung Rok Geem ;Jaewook Kim ;Wonsil Bae ;Moo-Geun Jee ;Jin Yu ;Inbae Jang;Dong-Yun Lee ;Chang Pyo Hong ;Donghwan Shim;Hojin Ryu
    • Journal of Ginseng Research
    • /
    • v.47 no.3
    • /
    • pp.469-478
    • /
    • 2023
  • Background: Nitrogen (N) is an essential macronutrient for plant growth and development. To support agricultural production and enhance crop yield, two major N sources, nitrate and ammonium, are applied as fertilizers to the soil. Although many studies have been conducted on N uptake and signal transduction, the molecular genetic mechanisms of N-mediated physiological roles, such as the secondary growth of storage roots, remain largely unknown. Methods: One-year-old P. ginseng seedlings treated with KNO3 were analyzed for the secondary growth of storage roots. The histological paraffin sections were subjected to bright and polarized light microscopic analysis. Genome-wide RNA-seq and network analysis were carried out to dissect the molecular mechanism of nitrate-mediated promotion of ginseng storage root thickening. Results: Here, we report the positive effects of nitrate on storage root secondary growth in Panax ginseng. Exogenous nitrate supply to ginseng seedlings significantly increased the root secondary growth. Histological analysis indicated that the enhancement of root secondary growth could be attributed to the increase in cambium stem cell activity and the subsequent differentiation of cambium-derived storage parenchymal cells. RNA-seq and gene set enrichment analysis (GSEA) revealed that the formation of a transcriptional network comprising auxin, brassinosteroid (BR)-, ethylene-, and jasmonic acid (JA)-related genes mainly contributed to the secondary growth of ginseng storage roots. In addition, increased proliferation of cambium stem cells by a N-rich source inhibited the accumulation of starch granules in storage parenchymal cells. Conclusion: Thus, through the integration of bioinformatic and histological tissue analyses, we demonstrate that nitrate assimilation and signaling pathways are integrated into key biological processes that promote the secondary growth of P. ginseng storage roots.

New Protein Extraction/Solubilization Protocol for Gel-based Proteomics of Rat (Female) Whole Brain and Brain Regions

  • Hirano, Misato;Rakwal, Randeep;Shibato, Junko;Agrawal, Ganesh Kumar;Jwa, Nam-Soo;Iwahashi, Hitoshi;Masuo, Yoshinori
    • Molecules and Cells
    • /
    • v.22 no.1
    • /
    • pp.119-125
    • /
    • 2006
  • The rat is an accepted model for studying human psychiatric/neurological disorders. We provide a protocol for total soluble protein extraction using trichloroacetic acid/acetone (TCA/A) from rat (female) whole brain, 10 brain regions and the pituitary gland, and show that two-dimensional gel electrophoresis (2-DGE) using precast immobilized pH (4-7) gradient (IPG) strip gels (13 cm) in the first dimension yields clean silver nitrate stained protein profiles. Though TCA/A precipitation may not be "ideal", the important choice here is the selection of an appropriate lysis buffer (LB) for solubilizing precipitated proteins. Our results reveal enrichment of protein spots by use of individual brain regions rather than whole brain, as well as the presence of differentially expressed spots in their proteomes. Thus individual brain regions provide improved protein coverage and are better suited for differential protein detection. Moreover, using a phosphoprotein-specific dye, ingel detection of phosphoproteins was demonstrated. Representative high-resolution silver nitrate stained proteome profiles of rat whole brain total soluble protein are presented. Shortcomings apart (failure to separate membrane proteins), gel-based proteomics remains a viable option, and 2-DGE is the method of choice for generating high-resolution proteome maps of rat brain and brain regions.

The study for the effect of biofilter and ultra-violet disinfector in fish-breeding place using seawater (폐쇄순환 양식장에서의 생물여과기 (biofilter) 및 자외선살균기(ultra-violet disinfector)효과에 대한 연구)

  • 강청근;노기완;류시영;조충희
    • Korean Journal of Veterinary Service
    • /
    • v.22 no.4
    • /
    • pp.357-361
    • /
    • 1999
  • The most harmful nitrogenous compounds in fish-breeding place using are ammonia and nitrate. Excessively high total nitrogen concentration is the signal of unbalance for breeding fishes in seawater and may result overfeeding or overstocking without seawater treatment system. The failure of elimination for the organic ingredients or nitrogen compounds can also cause the consequence of inadequate oxygen concentration in seawater, either. The study shows the effect of biofilter and W disinfector of seawater in the fish- breeding place. In the results, these tools had ammonia, nitrite, nitrate and decreased 71.8%, 27.6% and 1%, respectively, and the total number of microorganisms decreased up to 81.9%.

  • PDF

High Throughput Proteomic Approaches for the Dissection of Light Signal Transduction Pathways in Photosynthetic Cyanobacterium Synechocystis sp.PCC 6803

  • Chung Young-Ho;Park Young Mok
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2002.10a
    • /
    • pp.203-205
    • /
    • 2002
  • Light is an environmental signal that regulates photomovement and main energy source of photosynthesis in the cyanobacterium Synechocystis sp. PCC 6803 (Syn6803). Syn6803 is a popular model system for study of plant functional genomics. In this report, we adopted 2D gel based proteomics study to investigate proteins related with the light absorption and photo-protection in Syn6803. More than 700 proteins were detected on the SDS-gels stained with silver nitrate. Several proteins showing different expression level under various light conditions were identified with MALDI-TOF Mass spectrometry. As a comparison, we also conducted ICAT-based proteome study using WT and cphl (cyanobacterial phytochrome 1) mutant. A cphl deletion led to changes in the expression of proteins involved in translation, photosynthesis including photosystem and CO2 fixation, and cellular regulation. We are currently involved in TAP-tagging method to study protein-protein interactions in search for the molecular component involved in the light signal transduction of Syn6803 photomovement.

  • PDF

On-site Water Nitrate Monitoring System based on Automatic Sampling and Direct Measurement with Ion-Selective Electrodes

  • Kim, Dong-Wook;Jung, Dae-Hyun;Cho, Woo-Jae;Sim, Kwang-Cheol;Kim, Hak-Jin
    • Journal of Biosystems Engineering
    • /
    • v.42 no.4
    • /
    • pp.350-357
    • /
    • 2017
  • Purpose: In-situ monitoring of water quality is fundamental to most environmental applications. The high cost and long delays of conventional laboratory methods used to determine water quality, including on-site sampling and chemical analysis, have limited their use in efficiently managing water sources while preventing environmental pollution. The objective of this study was to develop an on-site water monitoring system consisting mainly of an Arduino board and a sensor array of multiple ion selective electrodes (ISEs) to measure the concentration of $NO_3$ ions. Methods: The developed system includes a combination of three ISEs, double-junction reference electrode, solution container, sampling system consisting of three pumps and solenoid valves, signal processing circuit, and an Arduino board for data acquisition and system control. Prior to each sample measurement, a two-point normalization method was applied for a sensitivity adjustment followed by an offset adjustment to minimize the potential drift that could occur during continuous measurement and standardize the response of multiple electrodes. To investigate its utility in on-site nitrate monitoring, the prototype was tested in a facility where drinking water was collected from a water supply source. Results: Differences in the electric potentials of the $NO_3$ ISEs between 10 and $100mg{\cdot}L^{-1}$ $NO_3$ concentration levels were nearly constant with negative sensitivities of 58 to 62 mV during the period of sample measurement, which is representative of a stable electrode response. The $NO_3$ concentrations determined by the ISEs were almost comparable to those obtained with standard instruments within 15% relative errors. Conclusions: The use of the developed on-site nitrate monitoring system based on automatic sampling and two-point normalization was feasible for detecting abrupt changes in nitrate concentration at various water supply sites, showing a maximum difference of $4.2mg{\cdot}L^{-1}$ from an actual concentration of $14mg{\cdot}L^{-1}$.

Amelioration of $Cd^{++}$ Toxicity by $Ca^{++}$ on Germination, Growth and Changes in Anti-Oxidant and Nitrogen Assimilation Enzymes in Mungbean(Vigna mungo) Seedlings

  • Kochhar Sunita;Ahmad Gayas;Kochhar Vinod Kumar
    • Journal of Plant Biotechnology
    • /
    • v.6 no.4
    • /
    • pp.259-264
    • /
    • 2004
  • The present study describes the ameliorating effect of $Ca^{++}\;on\;Cd^{++}$ toxicity on the germination, early growth of mungbean seedlings, nitrogen assimilation enzyme. s-nitrate reductase (NR), nitrite reductase (NIR), anti-oxidant enzymes (POD, CAT and SOD) and on the accumulation of hydrogen peroxide and sulphydryls. $Cd^{++}$ inhibited seed germination and root and shoot length of seedlings. While NR activity was down- regulated, the activities of NIR, POD and SOD were up- regulated with $Cd^{++}$ treatment. $Cd^{++}$ treatment also increased the accumulation of sulphydryls and peroxides, which is reflective of increased thiol rich proteins and oxidative stress. $Ca^{++}$ reversed the toxic effects of $Cd^{++}$ on germination and on early growth of seedlings as well as on the enzyme activities, which were in turn differentially inhibited with a combined treatment with calcium specific chelator EGTA. The results indicate that the external application of $Ca^{++}$ may increase the tolerance capacity of plants to environmental pollutants by both up and down regulating metabolic activities. Abbreviations: $Cd^{++}= cadmium,\;Ca^{++} = calcium$, NR= nitrate reductase, NIR=nitrite reductase, POD = peroxidse, SOD= superoxide dismutase, CAT= catalase, EGTA= ethylene glycol-bis( $\beta-aminoethyl ether$)-N,N,N,N-tetraacetic acid.