New Protein Extraction/Solubilization Protocol for Gel-based Proteomics of Rat (Female) Whole Brain and Brain Regions

  • Hirano, Misato (Human Stress Signal Research Center (HSS), National Institute of Advanced Industrial Science and Technology (AIST) WEST) ;
  • Rakwal, Randeep (Human Stress Signal Research Center (HSS), National Institute of Advanced Industrial Science and Technology (AIST) WEST) ;
  • Shibato, Junko (Human Stress Signal Research Center (HSS), National Institute of Advanced Industrial Science and Technology (AIST) WEST) ;
  • Agrawal, Ganesh Kumar (Research Laboratory for Agricultural Biotechnology and Biochemistry (RLABB)) ;
  • Jwa, Nam-Soo (Department of Molecular Biology, College of Natural Science, Sejong University) ;
  • Iwahashi, Hitoshi (Human Stress Signal Research Center (HSS), National Institute of Advanced Industrial Science and Technology (AIST) WEST) ;
  • Masuo, Yoshinori (Human Stress Signal Research Center (HSS), National Institute of Advanced Industrial Science and Technology (AIST) WEST)
  • Received : 2006.04.06
  • Accepted : 2006.06.12
  • Published : 2006.08.31

Abstract

The rat is an accepted model for studying human psychiatric/neurological disorders. We provide a protocol for total soluble protein extraction using trichloroacetic acid/acetone (TCA/A) from rat (female) whole brain, 10 brain regions and the pituitary gland, and show that two-dimensional gel electrophoresis (2-DGE) using precast immobilized pH (4-7) gradient (IPG) strip gels (13 cm) in the first dimension yields clean silver nitrate stained protein profiles. Though TCA/A precipitation may not be "ideal", the important choice here is the selection of an appropriate lysis buffer (LB) for solubilizing precipitated proteins. Our results reveal enrichment of protein spots by use of individual brain regions rather than whole brain, as well as the presence of differentially expressed spots in their proteomes. Thus individual brain regions provide improved protein coverage and are better suited for differential protein detection. Moreover, using a phosphoprotein-specific dye, ingel detection of phosphoproteins was demonstrated. Representative high-resolution silver nitrate stained proteome profiles of rat whole brain total soluble protein are presented. Shortcomings apart (failure to separate membrane proteins), gel-based proteomics remains a viable option, and 2-DGE is the method of choice for generating high-resolution proteome maps of rat brain and brain regions.

Keywords

Acknowledgement

Supported by : HSS

References

  1. Agrawal, G. K. and Rakwal, R. (2006) Rice proteomics: a cornerstone for cereal food crop proteomes. Mass Spectrom. Rev. 25, 1−53 https://doi.org/10.1002/mas.20056
  2. Agrawal, G. K. and Thelen, J. J. (2005) Development of a simplified, economical polyacrylamide gel staining protocol for phosphoproteins. Proteomics 5, 4684−4688 https://doi.org/10.1002/pmic.200500021
  3. Anderson, N. L. and Anderson, N. G. (1998) New technologies, new concepts, and new words. Electrophoresis 19, 1853−1861 https://doi.org/10.1002/elps.1150191103
  4. Celis, J. E. and Gromov, P. (1999) 2-D protein electrophoresis: can it be perfected- Curr. Opin. Biotechnol. 10, 16−21 https://doi.org/10.1016/S0958-1669(99)80004-4
  5. DeRisi, J. L., Lyer, V. R., and Brown, P. O. (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278, 680−686 https://doi.org/10.1126/science.278.5338.680
  6. Fiehn, O., Kopka, J., Dormann, P., Altmann, T., Trethewey, R. N., et al. (2000) Metabolite profiling for plant functional genomics. Nat. Biotechnol. 18, 1157−1161 https://doi.org/10.1038/81137
  7. Fountoulakis, M. (2004) Application of proteomics technologies in the investigation of the brain. Mass Spectrom. Rev. 23, 231−258 https://doi.org/10.1002/mas.10075
  8. Fountoulakis, M., Schuller, E., Hardmeier, R., Berndt, P., and Lubec, G. (1999) Rat brain proteins: two-dimensional protein database and variations in the expression level. Electrophoresis 20, 3572−3579 https://doi.org/10.1002/(SICI)1522-2683(19991201)20:18<3572::AID-ELPS3572>3.0.CO;2-T
  9. Fountoulakis, M., Tsangaris, G. T., Maris, A., and Lubec, G. (2005) The rat brain hippocampus proteome. J. Chrom. B 819, 115−129 https://doi.org/10.1016/j.jchromb.2005.01.037
  10. Glowinski, J. and Iversen, L. L. (1966) Regional studies of catecholamines in the rat brain - I: the distribution of [$^3H$] norepinephrine, [$^3H$]dopamine and [$^3H$]DOPA in various regions of the brain. J. Neurochem. 13, 655−669 https://doi.org/10.1111/j.1471-4159.1966.tb09873.x
  11. Gygi, S. P., Rochon, Y., Franza, B. R., and Aebersold, R. (1999) Correlation between protein and mRNA abundance in yeast. Mol. Cell. Biol. 19, 1720−1730
  12. Hanash, S. (2004) Building a foundation for the human proteome: the role of the human proteome organization. J. Proteome Res. 3, 197−199 https://doi.org/10.1021/pr034126h
  13. Hancock, W. S. (2004) Proteomics as a rapidly developing field. J. Proteome Res. 3, 337 https://doi.org/10.1021/pr040019r
  14. Jensen, O. N., Mortensen, P., Vorm, O., and Mann, M. (1997) Automation of matrix-assisted laser desorption/ionization mass spectrometry using fuzzy logic feedback control. Anal. Chem. 69, 1706−1714 https://doi.org/10.1021/ac961189t
  15. Kamimura, E., Ueno, Y., Tanaka, S., Sawa, H., Yoshioka, M., et al. (2001) New rat model for attention deficit hyperactive disorder (ADHD). Comp. Med. 51, 245−251
  16. Kim, S.-Y., Chudapongse, N., Lee, S.-M., Levin, M. C., Oh, J.-T., et al. (2005) Proteomic analysis of phosphotyrosyl proteins in morphine-dependent rat brains. Mol. Brain. Res. 133, 58−70 https://doi.org/10.1016/j.molbrainres.2004.09.018
  17. Loyet, K. M., Stults, J. T., and Arnott, D. (2005) Mass spectrometric contributions to the practice of phosphorylation site mapping through 2003: a literature review. Mol. Cell. Proteomics 4, 235−245 https://doi.org/10.1074/mcp.R400011-MCP200
  18. Masuo, Y. (2004a) Effects of neonatal treatment with 6-hydroxydopamine and endocrine disruptors on motor activity and gene expression in rats. Neural. Plas. 11, 59−76 https://doi.org/10.1155/NP.2004.59
  19. Masuo, Y. (2004b) Motor activity and gene expression in rats with neonatal 6-hydroxydopamine lesions. J. Neurochem. 91, 9−19 https://doi.org/10.1111/j.1471-4159.2004.02615.x
  20. McKinney Jr., W. T. and Bunney Jr., W. E. (1969) Animal model of depression. I. Review of evidence: Implications for research. Arch. Gen. Psychiatry 21, 240−248 https://doi.org/10.1001/archpsyc.1969.01740200112015
  21. O'Farrell, P. H. (1975) High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250, 4007−4021
  22. Paulson, L., Martin, P., Nilsson, C. L., Ljung, E., Westman- Brinkmalm, A., et al. (2004) Comparative proteome analysis of thalamus in MK-801-treated rats. Proteomics 4, 819−825 https://doi.org/10.1002/pmic.200300622
  23. Pawson, T. and Scott, J. D. (2005) Protein phosphorylation in signaling--50 years and counting. Trends Biochem. Sci. 30, 286−290 https://doi.org/10.1016/j.tibs.2005.04.013
  24. Phizicky, E., Bastiaens, P. I., Zhu, H., Snyder, M., and Fields, S. (2003) Protein analysis on a proteomic scale. Nature 422, 208−215 https://doi.org/10.1038/nature01512
  25. Rabilloud, T. (2003) Two-dimensional gel electrophoresis in proteomics: old, old fashioned, but it still climbs up the mountains. Proteomics 2, 3−10
  26. Reinders, J. and Sickmann, A. (2005) State-of-the-art in phosphoproteomics. Proteomics 5, 4052−4061 https://doi.org/10.1002/pmic.200401289
  27. Sagvolden, T. (2005) Rodent models of attention-deficits/hyperactivity disorder. Biol. Psychiatry 57, 1239−1247 https://doi.org/10.1016/j.biopsych.2005.02.002
  28. Schena, M., Shalon, D., Davis, R. W., and Brown, P. O. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467−470 https://doi.org/10.1126/science.270.5235.467
  29. Shalon, D., Smith, S. J., and Brown, P. O. (1996) A DNA microarray system for analyzing complex DNA samples using twocolor fluorescent probe hybridization. Genome Res. 6, 639−645 https://doi.org/10.1101/gr.6.7.639
  30. Steinberg, T. H., Agnew, B. J., Gee, K. R., Leung, W. Y., Goodman, T., et al. (2003) Global quantitative phosphoprotein analysis using multiplexed proteomics technology. Proteomics 3, 1128−1144 https://doi.org/10.1002/pmic.200300434
  31. Wilkins, M. R., Sanchez, J.-C., Williams, K. L., and Hochstrasser, D. F. (1996) Current challenges and future applications for protein maps and post-translational vector maps in proteome projects. Electrophoresis 17, 830−838 https://doi.org/10.1002/elps.1150170504
  32. Yeom, M., Shim, I., Lee, H.-J., and Hahm, D.-H. (2005) Proteomic analysis of nicotine-associated protein expression in the striatum of repeated nicotine-treated rats. Biochem. Biophys. Res. Commun. 326, 321−328 https://doi.org/10.1016/j.bbrc.2004.11.034