• 제목/요약/키워드: Nitrate ion

검색결과 337건 처리시간 0.021초

토양의 질산태 질소 간이검정 (The Test Strip Reflectometer Method as a Quick Test Procedure for Soil Nitrate Nitrogen)

  • 홍순달;박효택
    • 한국토양비료학회지
    • /
    • 제33권5호
    • /
    • pp.369-375
    • /
    • 2000
  • 밭 토양 특히 시설재배 토양의 질소시비량을 결정하기 위한 효율적 검정법으로 확인된 $NO_3-N$의 간이 검정법을 개발하기 위하여 Hanna Ion Specific meter를 이용한 비색법과 Test strip Reflectometer를 이용한 측정법을 선정하고, 실험실 분석법인 Specific Ion Meter에 의한 이온 전극법 및 Kjeldahl 증류법과 함께 비교 분석하였다. 평가방법은 토양중 $NO_3-N$ 함량이 $25mg\;kg^{-1}$$55mg\;kg^{-1}$인 두 토양에 대하여 각 분석방법을 7반복씩 수행하여 표준편차를 비교하였고, 두 토양에 $NO_3-N$ 표준용액을 첨가하여 $NO_3-N$ 함량이 각각 100, 150, 200, 250, $300mg\;kg^{-1}$인 표준농도 계열에 대하여 7반복으로 분석하여 회수율을 비교하였다. 또한 $NO_3-N$ 함량이 $10mg\;kg^{-1}$에서 $340mg\;kg^{-1}$으로 분포되는 시설재배 토양 20개 시료에 대하여 3반복씩 분석하여 $NO_3-N$ 농도에 따른 측정치의 신뢰도를 비교하였다. 분석방법에 따른 측정치의 신뢰도와 회수율은 이온 전극법이 가장 양호하였고 Kjeldahl 증류법, Test strip 간이법, Hanna 비색법의 순이었다. 간이 검정법에 따른 비교에서 Hanna 비색법은 낮은 농도와 높은 농도에서 큰 오차를 보였으나 Test strip 간이법은 실험실 정밀분석법인 이온 전극법 및 Kjeldahl 증류법과 버금가는 신뢰도와 95% 이상의 회수율을 보였다. 따라서 단순한 분석절차와 짧은 분석시간을 고려해 볼 때 Test strip 간이법은 질소 시비량의 결정을 위한 현장의 간이 검정법으로 활용 가능한 것으로 평가되었다.

  • PDF

전기투석과 이온교환수지를 이용한 스테인레스 산업의 산세폐수 내 질산성 질소의 제거 (Removal of Nitrate-Nitrogen in Pickling Acid Wastewater from Stainless Steel Industry Using Electrodialysis and Ion Exchange Resin)

  • 윤영기;박연진;오상화;신원식;최상준;류승기
    • 한국환경과학회지
    • /
    • 제18권6호
    • /
    • pp.645-654
    • /
    • 2009
  • Lab-scale Electrodialysis(ED) system with different membranes combined with before or after pyroma process were carried out to remove nitrate from two pickling acid wastewater containing high concentrations of $NO_3\;^-$(${\approx}$150,000 mg/L) and F($({\approx}$ 160,000 mg/L) and some heavy metals(Fe, Ti, and Cr). The ED system before Pyroma process(Sample A) was not successful in $NO_3\;^-$ removal due to cation membrane fouling by the heavy metals, whereas, in the ED system after Pyroma process(Sample B), about 98% of nitrate was removed because of relatively low $NO_3\;^-$ concentration (about 30,000 mg/L) and no heavy metals. Mono-selective membranes(CIMS/ACS) in ED system have no selectivity for nitrate compared to divalent-selective membranes(CMX/AMX). The operation time for nitrate removal time decreased with increasing the applied voltage from 10V to 15V with no difference in the nitrate removal rate between both voltages. Nitrate adsorption of a strong-base anion exchange resin of $Cl\;^-$ type was also conducted. The Freundlich model($R^2$ > 0.996) was fitted better than Langmuir mode($R^2$ > 0.984) to the adsorption data. The maximum adsorption capacity ($Q^0$) was 492 mg/g for Sample A and 111 mg/g for Sample B due to the difference in initial nitrate concentrations between the two wastewater samples. In the regeneration of ion exchange resins, the nitrate removal rate in the pickling acid wastewater decreased as the adsorption step was repeated because certain amount of adsorbed $NO_3\;^-$ remained in the resins in spite of several desorption steps for regeneration. In conclusion, the optimum system configuration to treat pickling acid wastewater from stainless-steel industry is the multi-processes of the Pyroma-Electrodialysis-Ion exchange.

전기투석을 이용한 지하수 중의 질산성질소 제거 (The removal of Nitrate-nitrogen from ground water by electrodialysis)

  • 민지희;김한승
    • 상하수도학회지
    • /
    • 제22권3호
    • /
    • pp.307-314
    • /
    • 2008
  • In this study, the effects of applied voltage, solution pH and coexistence of other ions such as sulfate ion (${SO_4}^{2-}$) and chloride ion ($Cl^-$) were investigated on the removal of nitrate-nitrogen ($NO_3{^-}-N$) from ground water by electrodialysis. The examined operating conditions were evaluated for optimizing the removal efficiency of $NO_3{^-}-N$. Real ground water samples taken from a rural area of Yongin city and artificial ones with components similar to the real ground water were tested for the study, which contained $NO_3{^-}-N$ concentration of 17mg/L that exceeds current drinking water quality standard of 10 mg/L. The increase in the removal rate of $NO_3{^-}-N$ was observed as the applied voltage increased from 5V to 30V, while no significant increase in the removal rate appeared at the applied voltage beyond 20V during a given operating time. The removal rate appeared to get lower at both acidic and basic condition, compared to neutral pH. Coexistence of of ${SO_4}^{2-}$and $Cl^-$ demanded much longer operating time to achieve a given removal rate or to meet a certain level of treated water concentration. When nitrate ion was combined with ${SO_4}^{2-}$and $Cl^-$, the removal rate was reduced by 4.29% and 10.83%, respectively.

시설 오이의 관비재배를 위한 토양용액과 엽병즙액중 질산태 농도 기준 설정 (A Criteria on Nitrate Concentration in Soil Solution and Leaf Petiole Juice for Fertigation of Cucumber (Cucumis sativus L.) under Greenhouse Cultivation)

  • 임재현;이인복;김홍림
    • 한국토양비료학회지
    • /
    • 제34권5호
    • /
    • pp.316-325
    • /
    • 2001
  • 비료의 효율적 이용 및 과다 시비에 따른 환경오염을 경감하고자 토양 및 식물체 중 질산이온 분석을 통한 간이진단기술을 검토하였다. 농가현장에서 토양중 질산이온을 추출하기 위한 간이검정방법으로서 porous cup을 이용한 토양용액채취법과 생토용적추출법은 실험실 분석법인 2M KCl 침출법과 비교하였고, 질산이온 간이측정기구인 compact ion meter, nitrate ion meter, test strip-소형 reflectometer법 등에 의한 질산이온 측정값은 실험실 정밀 측정장비인 IC 측정값과 비교하였다. 토양내 질소수준이 다른 하우스환경 하에서 오이의 재배기간동안 토양용액채취법과 생토용적침출법에 의한 토양중 질산이온농도는 주기적으로 monitoring 하였고, 엽병중 질산이온농도는 엽병 위치별로 분석하였으며, 토양과 식물체중 질산이온 농도들은 오이의 최종 수량과 관련하여 2차 회귀식으로 plotting 하였다. 질산이온 간이측정장비로서는 test strip을 이용한 소형 reflectometer법이 실험실 정밀 분석법인 IC에 의한 측정값과 가장 밀접한 상관성을 보였다. Porous cup을 이용한 토양용액채취법은 관수후 경과시간, 토양깊이, 점적호스로부터의 거리 등에 따라 토양용액중 질산이온 농도의 공간적 변이가 컸으나, 생토용적침출법과 2M KCl 침출법간 질산함량은 높은 상관성이 인정되었다. 엽병즙액중 질산농도의 엽의 위치에 따라 질산농도의 변화가 심하였고, 토양내 질소 수준에 따라 상위엽과 하위엽간 질소 농도의 분포 또한 상이하였다. 토양 및 식물체 엽병중 질산함량과 오이수량간 2차 회귀식으로부터 최고수량과 일치하는 각각의 질산 함량 수준을 검토한 결과, 토양용액채취법은 $400mg\;l^{-1}$ 수준, 생토용적 침출법은 $300mg\;l^{-1}$ 수준, 엽병즙액의 경우는 $1400mg\;l^{-1}$ 수준이었다. 여기서 엽병즙액과 오이수량간 상관성은 pot 시험을 통해 비교하였고, pot 실험결과 $1500mg\;l^{-1}$ 수준의 엽병내 질산농도 수준에서 최고 수량을 보여 하우스 실험결과와 유사하였다.

  • PDF

고산에서 측정한 입자상 질산염 농도 특성: 1998∼2002년 PM2.5와 TSP 측정자료 (Characteristics of Nitrate Concentration Measured at Gosan: Measurement Data of PM2.5 and TSP between 1998 and 2002)

  • 김나경;김용표;강창희;문길주
    • 한국대기환경학회지
    • /
    • 제20권1호
    • /
    • pp.119-128
    • /
    • 2004
  • The nitrate concentrations in PM$_{2.5}$ and TSP measured at Gosan, Jeju Island, Korea, between March 1998 and February 2002, are discussed. Especially, the characteristics of high nitrate concentration days were analyzed. High nitrate concentration cases in PM$_{2.5}$ were highly correlated with anthropogenic species such as NH$_4$$^{[-10]}$ , and high nitrate concentration cases in TSP were highly correlated with crustal species such as nss-Ca$^{2+}$ and nss -Mg$^{2+}$ Backward trajectory analysis results show the cases of high correlation between nitrate and anthropogenic species occurred when the air parcels moved from China, and the cases of high correlation between nitrate and crustal species occurred when the air parcels moved from Mongolia. Also, high nitrate concentration cases occurred most often in spring (65%) when the air parcels moved from Mongolia and China.ina.

국내 채소류의 질산염 함량 분석 (Analysis of Nitrate Contents of Some Vegetables Grown in Korea)

  • 정소영;소유섭;김미혜;원경풍;홍무기
    • 한국식품영양과학회지
    • /
    • 제28권5호
    • /
    • pp.969-972
    • /
    • 1999
  • Nitrate is taken up from the soil by plants for protein synthesis and present in vegetables as a natural component and/or contaminant. The objective of this study was to estimate nitrate(NO3-) contents of some vegetables(Chinese cabbage, radish, lettuce, spinach) which were produced in Korea and to provide a scientific basis for the evaluation of risk to public health arising from dietary exposure to nitrate. A total of 400 samples were analysed for nitrate contents using our ion chromatography. From the results, in general, nitrate levels in vegetables produced by 2 harvest seasons were not different. The minimum, maximum and mean values of nitrate were 311, 5522 and 2788 for spinach; 542, 4484 and 2287 for lettuce; 273, 4151 and 1551 for radish; 362, 3015 and 1498(mg/kg) for Chinese cabbage. Nitrate contents of vegetables grown in Korea were similar to those of vegetables grown in other countries.

  • PDF

Cucurbita pepo에서 분리한 Light Membrane Vesicle의 ATPase와 Phosphatase의 정제 및 특성 (Purification and Characterization of ATPase and Phosphatase of Light Membrane Vesicles Isolated from Cucurbita pepo)

  • 오승은
    • Journal of Plant Biology
    • /
    • 제33권4호
    • /
    • pp.325-332
    • /
    • 1990
  • Light membrane vesicles were isolated from the zucchini hypocotyl by floatation on ficoll density gradients and the proteins were solubilized with Triton X100. Three ATP-hydrolyzing enzymes were partially purified by ion-exchange and gel filtration chromatography and isoelectric focusing. There are plasma membrane-type ATPase whose activity was inhibited by vanadate but not by nitrate, tonoplast-type ATPase which was sensitive to nitrate but insensitive to vanadate and one having a phosphatase activity with a pI value different from that of an acid phosphatase. A fraction was obtained after DEAE-ion-exchange chromatography crossreacting with polyclonal antibodies against Ca2+ -ATPase from human erythrocytes.

  • PDF

Disposable Nitrate-Selective Optical Sensor Based on Fluorescent Dye

  • Kim, Gi-Young;Sudduth, Kenneth A.;Grant, Sheila A.;Kitchen, Newell R.
    • Journal of Biosystems Engineering
    • /
    • 제37권3호
    • /
    • pp.209-213
    • /
    • 2012
  • Purpose: This study was performed to develop a simple, disposable thin-film optical nitrate sensor. Methods: The sensor was fabricated by applying a nitrate-selective polymer membrane on the surface of a thin polyester film. The membrane was composed of polyvinylchloride (PVC), plasticizer, fluorescent dye, and nitrate-selective ionophore. Fluorescence intensity of the sensor increased on contact with a nitrate solution. The fluorescence response of the optical nitrate sensor was measured with a commercial fluorospectrometer. Results: The optical sensor exhibited linear response over four concentration decades. Conclusions: Nitrate ion concentrations in plant nutrient solutions can be determined by direct optical measurements without any conditioning before measurements.

Copper ion Toxicity Causes Discrepancy between Acetate Degradation and Methane Production in Granular Sludge

  • Bae, Jin-Woo;Rhee, Sung-Keun;Jang, Am;Kim, In-S.;Lee, Sung-Taik
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권5호
    • /
    • pp.849-853
    • /
    • 2002
  • Metal ions have an adverse effect on anaerobic digestion. In an acetate degradation test of upflow of anaerobic sludge blanket granules with $Cu^{2+}$, not all of the acetate that disappeared was stoichiometrically converted to methane. In the presence of 400 mg/g-VSS (volatile suspended solids) $Cu^{2+}$, only 26% of the acetate consumed was converted to methane. To study acetate conversion by other anaerobic microorganisms, sulfate and nitrate reductions were investigated in the presence of $Cu^{2+}$ Sulfate and nitrate reductions exhibited more resistance to $Cu^{2+}$than methanogenesis, and the granules reduced 2.2 mM and 5.4 mM of nitrate and sulfate, respectively, in the presence of 400 mg/g-VSS copper ion. However, the acetate degraded by sulfate and nitrate reductions was only 24% of the missing acetate that could have been stoichiometrically converted to $CO_2$. Accordingly, 76% of the acetate consumed appeared to have been converted to other unknown compounds.

염화철코팅 활성탄을 이용한 지하수 중의 질산성질소 제거를 위한 연구 (A Study on the Removal of $NO_3-N$ from Groundwater by $FeCl_3$-Coated Activated Carbon)

  • 정경훈;정오진;최형일;박상일;박대훈
    • 한국환경보건학회지
    • /
    • 제31권2호
    • /
    • pp.165-171
    • /
    • 2005
  • A laboratory experiment was performed to investigate the nitrate removal from groundwater using Iron chloride(III) coated activated carbon (ICCAC). The breakthrough profiles of two ionic species, such as nitrate and sulfate showed that nitrate was selectively exchanged with chloride in ICCAC. The $FeCl_3$-coated activated carbon produced about 26 BV (Bed volume) of throughout when treating groundwater containing about $25\;mg/\iota\;of\;NO_3-N$. The regeneration of ICCAC with 1M KC1 was effective at a flow rate of 4 BV/hr. The ion exchange technology seems to be suitable technology for the treatment of small volumes of groundwater polluted by nitrate.