• 제목/요약/키워드: Nicotinamide

검색결과 237건 처리시간 0.027초

효소반응법을 이용한 우황 및 우황함유 액상 제제 중 총담즙산의 정량 (Quantitative Determination of Total Bile Acids from Bezoar and Bezoar-containing Liquid Preparation by Enzymatic Technique)

  • 하인식;김승환;차봉진;권종원;양중익;민신홍
    • Journal of Pharmaceutical Investigation
    • /
    • 제21권2호
    • /
    • pp.67-71
    • /
    • 1991
  • A simple and sensitive method was developed for the quantification of free and conjugated bile acids in bezoar without prior hydrolysis. $3{\alpha}-Hydroxy$ bile acids are first oxidized to 3-keto bile acids in the reaction catalyzed by $3{\alpha}-hydroxysteroid$ $dehydrogenase(3{\alpha}-HSD)$. During this oxidative reaction, an equimolar quantity of nicotinamide adenine dinucleotide(NAD) is reduced to NADH and subsequently oxidized to NAD with concomitant reduction of nitrotetrazolium blue(NTB) to diformazan by the catalytic action of diaphorase. The diformazan has an absorbance maximum at 540 nm. The intensity of the color produced is directly proportional to bile acids concentration in the bezoar extracts. The optimum conditions for the enzymatic reaction such as effects of reaction time, reaction temperature and pH, and stability were investigated. Calibration plots for the sodium chelate observed to be linear and intra-, inter-assay analytical recovery of bile acids averaged $97.65{\pm}3.4%(S.D.)$. Therefore, it is considered that the quality control of total bile acids from bezoar or bezoar-containing liquid preparation using this simple and sensitive assay system will be acceptable. Also current bezoars and bezoar-containing liauid preparations were examined their total bile acids from this method.

  • PDF

Development of Inhibitors against TraR Quorum-Sensing System in Agrobacterium tumefaciens by Molecular Modeling of the Ligand-Receptor Interaction

  • Kim, Cheoljin;Kim, Jaeeun;Park, Hyung-Yeon;Park, Hee-Jin;Kim, Chan Kyung;Yoon, Jeyong;Lee, Joon-Hee
    • Molecules and Cells
    • /
    • 제28권5호
    • /
    • pp.447-453
    • /
    • 2009
  • The quorum sensing (QS) inhibitors that antagonize TraR, a receptor protein for N-3-oxo-octanoyl-L-homoserine lactones (3-oxo-C8-HSL), a QS signal of Agrobacterium tumefaciens were developed. The structural analogues of 3-oxo-C8-HSL were designed by in silico molecular modeling using SYBYL packages, and synthesized by the solid phase organic synthesis (SPOS) method, where the carboxamide bond of 3-oxo-C8-HSL was replaced with a nicotinamide or a sulfonamide bond to make derivatives of N-nicotinyl-L-homoserine lactones or N-sulfonyl-L-homoserine lactones. The in vivo inhibitory activities of these compounds against QS signaling were assayed using reporter systems and compared with the estimated binding energies from the modeling study. This comparison showed fairly good correlation, suggesting that the in silico interpretation of ligand-receptor structures can be a valuable tool for the pre-design of better competitive inhibitors. In addition, these inhibitors also showed anti-biofilm activities against Pseudomonas aeruginosa.

DC23, a Triazolothione Resorcinol Analogue, Is Extensively Metabolized to Glucuronide Conjugates in Human Liver Microsomes

  • Shon, Jong Cheol;Joo, Jeongmin;Lee, Taeho;Kim, Nam Doo;Liu, Kwang-Hyeon
    • Mass Spectrometry Letters
    • /
    • 제9권1호
    • /
    • pp.24-29
    • /
    • 2018
  • DC23, a triazolothione resorcinol analogue, is known to inhibit heat shock protein 90 and pyruvate dehydrogenase kinase which are up-regulated in cancer and diabetes, respectively. This study was performed to elucidate the metabolism of DC23 in human liver microsomes (HLMs). HLMs incubated with DC23 in the presence of uridine 5'-diphosphoglucuronic acid (UDPGA) and/or ${\beta}$-nicotinamide adenine dinucleotide phosphate (NADPH) resulted in the formation of four metabolites, M1-M4. M1 was identified as DC23-N-Oxide, on the basis of LC-MS/MS analysis. DC23 was further metabolized to its glucuronide conjugates (M2, M3, and M4). In vitro metabolic stability studies conducted with DC23 in HLMs revealed significant glucuronide conjugation with a $t_{1/2}$ value of 1.3 min. The inhibitory potency of DC23 on five human cytochrome P450s was also investigated in HLMs. In these experiments, DC23 inhibited CYP2C9-mediated tolbutamide hydroxylase activity with an $IC_{50}$ value of $8.7{\mu}M$, which could have implications for drug interactions.

HCl/에탄올로 유발된 급성 위염에서 Artemisia frigida Willd의 위장 보호 효과 (Gastroprotective Effect of Artemisia frigida Willd in HCl/Ethanol-induced Acute Gastritis)

  • 오민혁;이세희;박해진;신미래;;노성수
    • 생약학회지
    • /
    • 제52권4호
    • /
    • pp.242-250
    • /
    • 2021
  • Artemisia frigida Willd (AW, Fringed sagewort), which is widespread in Mongolia, is a well-known medicinal plant as a member of the Compositae family. This study aims to explore the gastroprotective effect of water extract of AW on 150 mM HCl/60% ethanol-induced acute gastritis in 5 week old male ICR mice. Total polyphenols, total flavonoid contents, and anti-oxidant activity in vitro in AW were evaluated. First, the gross area of gastric mucosal damage was measured. Then western blot analysis was conducted to determine the possible mechanisms of action underlying the effects of AW. AW administration decreased gastric mucosal damage. Moreover, the group with AW treatment effectively inhibited nicotinamide adenine dinucleotide phosphate (NADPH) oxidase expression associated with oxidative stress. AW treatment enhanced an anti-oxidant effect through the increase of anti-oxidant proteins. Besides, the increased expressions of inflammatory cytokines induced by nuclear factor-kappa B (NF-κB) activation are alleviated through AW treatment. Taken together, AW exerted a gastroprotective effect against gastric mucosal damage. These results indicate that AW could have the potential used as a natural therapeutic drug for the treatment of acute gastritis.

Enzymes and Their Reaction Mechanisms in Dimethylsulfoniopropionate Cleavage and Biosynthesis of Dimethylsulfide by Marine Bacteria

  • Do, Hackwon;Hwang, Jisub;Lee, Sung Gu;Lee, Jun Hyuck
    • 한국해양생명과학회지
    • /
    • 제6권1호
    • /
    • pp.1-8
    • /
    • 2021
  • In marine ecosystems, the biosynthesis and catabolism of dimethylsulfoniopropionate (DMSP) by marine bacteria is critical to microbial survival and the ocean food chain. Furthermore, these processes also influence sulfur recycling and climate change. Recent studies using emerging genome sequencing data and extensive bioinformatics analysis have enabled us to identify new DMSP-related genes. Currently, seven bacterial DMSP lyases (DddD, DddP, DddY, DddK, DddL, DddQ and DddW), two acrylate degrading enzymes (DddA and DddC), and four demethylases (DmdA, DmdB, DmdC, and DmdD) have been identified and characterized in diverse marine bacteria. In this review, we focus on the biochemical properties of DMSP cleavage enzymes with special attention to DddD, DddA, and DddC pathways. These three enzymes function in the production of acetyl coenzyme A (CoA) and CO2 from DMSP. DddD is a DMSP lyase that converts DMSP to 3-hydroxypropionate with the release of dimethylsulfide. 3-Hydroxypropionate is then converted to malonate semialdehyde by DddA, an alcohol dehydrogenase. Then, DddC transforms malonate semialdehyde to acetyl-CoA and CO2 gas. DddC is a putative methylmalonate semialdehyde dehydrogenase that requires nicotinamide adenine dinucleotide and CoA cofactors. Here we review recent insights into the structural characteristics of these enzymes and the molecular events of DMSP degradation.

강황(薑黃)이 MIA 유도 골관절염 모델에 미치는 영향 (Effects of Curcuma longa Rhizoma on MIA-induced Osteoarthritis in Rat Model)

  • 김영준
    • 대한한의학회지
    • /
    • 제40권3호
    • /
    • pp.35-58
    • /
    • 2019
  • Objectives: The aim of this study was to investigate the anti-inflammatory effects of Curcuma longa rhizoma extract in an experimental rat model of osteoarthritis. Methods: Osteoarthritis was induced in rats by injecting monosodium iodoacetate (MIA) into the knee joint cavity of rats. The rats were divided into 5 groups (Normal, Control, positive comparison, low (CL) and high (CH) concentration groups). Rats in the low concentration (CL) group had MIA-induced osteoarthritis; they were treated with Curcuma longa rhizoma extract at a dose of 50mg/kg body weight. Rats in the high concentration (CH) group had MIA-induced osteoarthritis; they were treated with Curcuma longa rhizoma extract at a dose of 100mg/kg body weight. Hind paw weight distribution and ROS levels were measured. At the end of all treatments, changes in alanine aminotransferase (ALT), aspartate aminotransferase (AST), blood urea nitrogen (BUN), and creatinine levels were analyzed. In addition, inflammatory protein levels were evaluated by western blot analysis. Results: In this study, hind paw weight distribution significantly improved in the CL and CH groups, while. Reactive oxygen species (ROS) production significantly decreased in both. The levels of ALT, AST, BUN, and creatinine did not significantly change in either group. The production of nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4), $p47^{phox}$, and Ras-related C3 botulinum toxin substrate 1 (RAC1) decreased in both. Catalase, heme oxygenase-1 (HO-1) and superoxide dismutase (SOD) significantly increased in the CL and CH groups, respectively. Nuclear factor erythroid 2 (Nrf2) increased, but there were no significant differences between the experimental and control groups. Inflammatory cytokines, including nuclear factor-kappa Bp65 (NF-${\kappa}Bp65$), interleukin-1beta (IL-$1{\beta}$), and tumor necrosis factor-alpha (TNF-${\alpha}$), decreased significantly in both the CL and CH groups. Conclusions: Our results showed that Curcuma longa rhizoma extract has anti-inflammatory effects. Anti-inflammatory activity is regulated by the inhibition of inflammatory cytokines and mediators, such as NF-${\kappa}B$, therefore, it suppresses cartilage damage as well.

Effects of Saccharomyces cerevisiae and phytase co-fermentation of wheat bran on growth, antioxidation, immunity and intestinal morphology in broilers

  • Chuang, Wen-Yang;Lin, Li-Jen;Hsieh, Yun-Chen;Chang, Shen-Chang;Lee, Tzu-Tai
    • Animal Bioscience
    • /
    • 제34권7호
    • /
    • pp.1157-1168
    • /
    • 2021
  • Objective: The aim of this study was to investigate the effects of different amounts of wheat bran (WB) inclusion and postbiotics form by Saccharomyces cerevisiae and phytase co-fermented wheat bran (FWB) on the growth performance and health status of broilers. Methods: Study randomly allocated a total of 300 male broilers to a control and 4 treatment groups (5% WB, 5% FWB, 10% WB, and 10% FWB inclusion, respectively) with each pen having 20 broilers and 3 pens per treatment. Results: The WB does not contain enzymes, but there are 152.8, 549.2, 289.5, and 147.1 U/g dry matter xylanase, protease, cellulase and β-glucanase in FWB, respectively. Furthermore, FWB can decrease nitric oxide release of lipopolysaccharide stimulated chicken peripheral blood mononuclear cells by about two times. Results show that 10% FWB inclusion had significantly the highest weight gain (WG) at 1 to 21 d; 5% FWB had the lowest feed conversion rate at 22 to 35 d; 10% WB and 10% FWB inclusion have the highest villus height and Lactobacillus spp. number in caecum; and both 5% and 10% FWB can increase ash content in femurs. Compared to control group, all treatments increase mucin 2, and tight junction (TJ), such as occludin, claudin-1, zonula occludens-1, and mRNA expression in ileum by at least 5 folds. In chicken peripheral blood mononuclear cells, nicotinamide adenine dinucleotide phosphate-oxidase-1 mRNA expression decreases from 2 to 5 times, and glutamate-cysteine ligase catalytic subunit mRNA expression also increases in all treatment groups compared to control group. The mRNA expression of pro-inflammatory cytokines, including interleukin-6 (IL-6), nuclear factor-κB, and IL-1β, decreases in 5% and 10% FWB groups compared to control group. Conclusion: To summarize, both WB and FWB inclusion in broilers diets increase TJ mRNA expression and anti-oxidation and anti-inflammation, but up to 10% FWB groups have better WG in different stages of broiler development.

Morphology and Molecular Identification of Echinostoma revolutum and Echinostoma macrorchis in Freshwater Snails and Experimental Hamsters in Upper Northern Thailand

  • Butboonchoo, Preeyaporn;Wongsawad, Chalobol;Wongsawad, Pheravut;Chai, Jong-Yil
    • Parasites, Hosts and Diseases
    • /
    • 제58권5호
    • /
    • pp.499-511
    • /
    • 2020
  • Echinostome metacercariae were investigated in freshwater snails from 26 districts in 7 provinces of upper northern Thailand. The species identification was carried out based on the morphologies of the metacercariae and adult flukes harvested from experimental hamsters, and on nucleotide sequences of internal transcribed spacer 2 (ITS2) and nicotinamide adenine dinucleotide dehydrogenase subunit 1 (nad1) genes. Twenty-four out of 26 districts were found to be infected with echinostome metacercariae in freshwater snails with the prevalence of 40.4%. The metacercariae were found in all 6 species of snails, including Filopaludina martensi martensi (21.9%), Filopaludina doliaris (50.8%), F. sumatrensis polygramma (61.3%), Bithynia siamensis siamensis (14.5%), Bithynia pulchella (38.0%), and Anenthome helena (4.9%). The echinostome metacercariae found in these snails were identified as Echinostoma revolutum (37-collar-spined) and Echinostoma macrorchis (45-collar-spined) morphologically and molecularly. The 2-week-old adult flukes of E. revolutum revealed unique features of the cirrus sac extending to middle of the ventral sucker and smooth testes. E. macrorchis adults revealed the cirrus sac close to the right lateral margin of the ventral sucker and 2 large and elliptical testes with slight indentations and pointed posterior end of the posterior testis. The ITS2 and nad1 sequences confirmed the species identification of E. revolutum, and the sequences of E. macrorchis have been deposited for the first time in GenBank. The presence of the life cycle of E. macrorchis is a new record in Thailand and the snail F. doliaris as their second intermediate host seems to be new among the literature.

NOX4/Src regulates ANP secretion through activating ERK1/2 and Akt/GATA4 signaling in beating rat hypoxic atria

  • Wu, Cheng-zhe;Li, Xiang;Hong, Lan;Han, Zhuo-na;Liu, Ying;Wei, Cheng-xi;Cui, Xun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제25권2호
    • /
    • pp.159-166
    • /
    • 2021
  • Nicotinamide adenine dinucleotide phosphate oxidases (NOXs) are the major enzymatic source of reactive oxygen species (ROS). NOX2 and NOX4 are expressed in the heart but its role in hypoxia-induced atrial natriuretic peptide (ANP) secretion is unclear. This study investigated the effect of NOX on ANP secretion induced by hypoxia in isolated beating rat atria. The results showed that hypoxia significantly upregulated NOX4 but not NOX2 expression, which was completely abolished by endothelin-1 (ET-1) type A and B receptor antagonists BQ123 (0.3 μM) and BQ788 (0.3 μM). ET-1-upregulated NOX4 expression was also blocked by antagonists of secreted phospholipase A2 (sPLA2; varespladib, 5.0 μM) and cytosolic PLA2 (cPLA2; CAY10650, 120.0 nM), and ET-1-induced cPLA2 expression was inhibited by varespladib under normoxia. Moreover, hypoxia-increased ANP secretion was evidently attenuated by the NOX4 antagonist GLX351322 (35.0 μM) and inhibitor of ROS N-Acetyl-D-cysteine (NAC, 15.0 mM), and hypoxia-increased production of ROS was blocked by GLX351322. In addition, hypoxia markedly upregulated Src expression, which was blocked by ET receptors, NOX4, and ROS antagonists. ET-1-increased Src expression was also inhibited by NAC under normoxia. Furthermore, hypoxia-activated extracellular signal-regulated kinase 1/2 (ERK1/2) and protein kinase B (Akt) were completely abolished by Src inhibitor 1 (1.0 μM), and hypoxia-increased GATA4 was inhibited by the ERK1/2 and Akt antagonists PD98059 (10.0 μM) and LY294002 (10.0 μM), respectively. However, hypoxia-induced ANP secretion was substantially inhibited by Src inhibitor. These results indicate that NOX4/Src modulated by ET-1 regulates ANP secretion by activating ERK1/2 and Akt/GATA4 signaling in isolated beating rat hypoxic atria.

Thioacetamide로 유발한 간손상 모델에서 계혈등(鷄血藤)의 간보호 효과 (Protective Effect of Spatholobi Caulis in Thioacetamide induced Acute Liver Injury of Rat)

  • 오민혁;신미래;노성수
    • 대한본초학회지
    • /
    • 제36권2호
    • /
    • pp.31-42
    • /
    • 2021
  • Objectives : This study was undertaken to investigate the hepatoprotective effect of Spatholobi Caulis water extract (SC) to thioacetamide (TAA)-induced acute liver injury (ALI) in rats. Methods : The rats were injected intraperitoneally with TAA (200 mg/kg body weight) and orally administered SC (100 or 200 mg/kg b.w.) daily for 3 days. Liver biomarkers were assessed by serum glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), and ammonia levels. Malondialdehyde (MDA) was measured both serum and liver tissue. In addition, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, anti-oxidant, and inflammation-related proteins were investigated by western blot analysis. Histological examination further confirmed though hematoxylin and eosin stain. Results : The SC treatment reduced liver function markers like GOT and GPT and also remarkably decreased ammonia level. Moreover, the elevated MDA level in TAA-induced group was significantly reduced by SC treatment. NADPH oxidase expression associated with oxidative stress including NOX2, NOX4, and p47phox markedly inhibited by SC administration. SC treatment exerted anti-oxidant effect through the increase of anti-oxidant enzyme including superoxide dismutase (SOD), Catalase, and heme oxygenase-1 (HO-1). The protein expressions of inflammatory cytokines such as tumor necrosis factor-�� (TNF-��), IL-6, and IL-1�� induced by nuclear factor-kappa B (NF-��B) activation were modulated through blocking the phosphorylation of inhibitor of nuclear factor ��B�� (I��B)��. SC treatment also improved histological alterations. Conclusion : These findings suggested that SC administration may be a potential candidate for the prevention or treatment of ALI.