• Title/Summary/Keyword: Nickel recovery

Search Result 120, Processing Time 0.029 seconds

Recovery of Iron-Nickel Alloy Etching Waste Solution in Pilot Scale (파일럿 규모에서 철-니켈 합금 에칭폐액 재생)

  • Chae, Byungman;Kim, Dae-Weon;Hwang, Sung-Ok;Kim, Deukhyeon;Lee, Sangwoo
    • Clean Technology
    • /
    • v.23 no.4
    • /
    • pp.393-400
    • /
    • 2017
  • In this study, we have developed a process for separating and recovering Ni and Fe in solution through a new solvent instead of TBP and Alamine336, which are solvents used in the conventional solvent extraction method. Experimental conditions were optimized through lab test and a $10L\;h^{-1}$ pilot plant was constructed for commercialization. In addition, the process data for mass production were obtained through pilot experiment and it was confirmed that there is no problem in product quality that can be used through the corrosion test of ferric chloride.

Finite Element Simulation of Interface Bonding in Kinetic Sprayed Coatings (유한요소 시뮬레이션을 통한 저온 분사 코팅의 계면 접합에 대한 연구)

  • Bae, Gyu-Yeol;Kang, Ki-Cheol;Yoon, Sang-Hoon;Lee, Chang-Hee
    • Journal of Welding and Joining
    • /
    • v.26 no.6
    • /
    • pp.74-80
    • /
    • 2008
  • A finite element modeling approach has been described for the simulation and analysis of the micron-scaled solid particle impact behavior in kinetic spraying process, using an explicit code (ABAQUS 6.7-2). High-strain-rate plastic deformation and interface bonding features of the copper, nickel, aluminum, and titanium were investigated via FEM in conjunction with the Johnson-Cook plasticity model. Different aspects of adiabatic shear instabilities of the materials were characterized as a concept of thermal boost-up zone (TBZ), and also discussed based upon energy balance concept with respect to relative recovery energy (RRE) for the purpose of optimizing the bonding process.

Compressive behavior of concrete confined with iron-based shape memory alloy strips

  • Saebyeok, Jeong;Kun-Ho E., Kim;Youngchan, Lee;Dahye, Yoo;Kinam, Hong;Donghyuk, Jung
    • Earthquakes and Structures
    • /
    • v.23 no.5
    • /
    • pp.431-444
    • /
    • 2022
  • The unique thermomechanical properties of shape memory alloys (SMAs) make it a versatile material for strengthening and repairing structures. In particular, several research studies have already demonstrated the effectiveness of using the heat activated shape memory effect of nickel-titanium (Ni-Ti) based SMAs to actively confine concrete members. Despite the proven effectiveness and wide commercial availability of Ni-Ti SMAs, however, their high cost remains a major obstacle for applications in real structural engineering projects. In this study, the shape memory effect of a new, much more economical iron-based SMA (Fe-SMA) is characterized and the compressive behavior of concrete confined with Fe-SMA strips is investigated. Tests showed the Fe-SMA strips used in this study are capable of developing high levels of recovery stress and can be easily formed into hoops to provide effective active and passive confining pressure to concrete members. Compared to concrete cylinders confined with conventional carbon fiber-reinforced polymer (CFRP) composites, Fe-SMA confinement yielded significantly higher compressive deformation capacity and residual strength. Overall, the compressive behavior of Fe-SMA confined concrete was comparable to that of Ni-Ti SMA confined concrete. This study clearly shows the potential for Fe-SMA as a robust and cost-effective strengthening solution for concrete structures and opens possibilities for more practical applications.

Separate and Combined Effect of Cadmium and Nickel on Blood Pressure in Rats (흰쥐에서 카드뮴과 니켈이 혈압에 미치는 효과)

  • Cha, Bong-Suk;Wang, Seung-Jun
    • Journal of Preventive Medicine and Public Health
    • /
    • v.34 no.2
    • /
    • pp.127-130
    • /
    • 2001
  • Objective : To verify the separate and combined effects of cadmium and nickel on blood pressure in rats. Methods : Following the daily administration of cadmium chloride$(CdCl_2)$ and nickel chloride$(NiCl_2)$ to rats both individually and in combination with intraperitoneal injection method for one week, systolic blood pressure of the tail was measured at 1 day and 5, 10, 20, 30 days after administration. Each substance was injected into the rats with 0.1 mg/kg bw and 1.0 mg/kg bw concentration. Results : After 0.1 mg/kg bw $CdCl_2$ was injected, a statistically significant difference was found as compared with the control group(only saline) after 1, 5 and 10 days. After 0.1 mg/kg bw $NiCl_2$ was injected, a statistically significant difference was not found compared with the control group. After 0.1 mg/kg bw $CdCl_2$ and 0.1 mg/kg bw $NiCl_2$ were injected simultaneously, a statistically significant difference was found as compared with the control group after 1,5 and 10 days and compared with 0.1 mg/kg bw $CdCl_2$ group after 5 days and as compared with 0.1 mg/kg bw $NiCl_2$ group after 5 and 10 days. After 1.0 mg/kg bw $CdCl_2$ was injected, a statistically significant difference was found as compared with the control group after 1, 5, 10 and 20 days. After 1.0 mg/kg bw $NiCl_2$ was injected, a statistically significant difference was found as compared with the control group after 1 day and 5 days. After 1.0 mg/kg bw $CdCl_2$ and 1.0 mg/kg bw $NiCl_2$ were injected in combination, a statistically significant difference was found after 1, 5, 10, 20 and 30 days as compared with 1.0 mg/kg bw $CdCl_2$ after 10, 20 and 30 days and as compared with 1.0 mg/kg bw $NiCl_2$ after 5, 10, 20 and 30 days. Conclusion : It was found that the effect of $CdCl_2$ on blood pressure was much more than $NiCl_2$ and a high concentration $CdCl_2\;and\;NiCl_2$ in combination delayed the recovery of blood pressure.

  • PDF

Studies on the Treatment of Nickel ion Containing Wastewater by Manganese Nodule Bed Column Adsorption (니켈 함유(含有) 폐수(廢水)의 망간단괴(團塊) 고정층(園定層) 연속(連續) 흡착(吸着) 처리(處理))

  • Baek, Mi-Hwa;Shin, Myung-Sook;Kim, Dong-Su;Jung, Sun-Hee;Park, Kyoung-Ho
    • Resources Recycling
    • /
    • v.15 no.3 s.71
    • /
    • pp.66-73
    • /
    • 2006
  • Continuous column adsorption experiments have been conducted fur artificial and actual wastewater which containing $Ni^{2+}$ by using manganese nodule as an adsorbent for the purpose of wastewater treatment along with an increased $Ni^{2+}$ recovery in the refining of manganese nodule. The adsorption features of $Ni^{2+}$ artificial wastewater were examined by taking the height of fixed bed, influent flow rate, and the initial concentration of adsorbate as the influential parameters. The adsorption capacity of manganese nodule and the rate constant for $Ni^{2+}$ adsorption were estimated employing Bohart-Adams equation. In addition, the variation of the adsorbed amount of adsorbate for each column according to the influent flow rate and the initial concentration of adsorbate was investigated based on the breakthrough curves fur each column. For serially connected columns, the adsorbed amount of $Ni^{2+}$ for each column was observed to increase gradually as the adsorption proceeded from the initial column to the final column. The variation of the breakthrough curve for actual wastewater with the height of fixed bed was not so significant as that for artificial wastewater, which was considered to be due to the high concentration of $Ni^{2+}$ in actual wastewater. Regarding the effect of the particle size of manganese nodule on adsorption, the adsorbed amount of adsorbate was found to somewhat increase as the particle size became smaller.

A Study on the Separation of Cerium from Rare Earth Precipitates Recovered from Waste NiMH Battery (폐니켈수소전지에서 회수된 희토류복합 침전분말로부터 세륨 회수에 대한 연구)

  • Kim, Boram;Ahn, Nak-Kyoon;Lee, Sang-Woo;Kim, Dae-Weon
    • Resources Recycling
    • /
    • v.28 no.6
    • /
    • pp.18-25
    • /
    • 2019
  • In order to recover the cerium contained in the spent nickel metal hydride batteries (NiMH battery), the recovered rare earth complex precipitates from NIMH were converted into rare earth hydroxides through ion exchange reaction to react with NaOH aqueous solution at a reaction temperature of 70 ℃, for 4 hours. Rare earth hydroxides were oxidized by injecting air at 80 ℃ for 4 hours to oxidize Ce3+ to Ce4+. The oxidation rate of cerium was confirmed to be about 25 % through XPS, and the oxidized powder was separated from the rest of the rare earth using the difference in solubility in dilute sulfuric acid. The finally recovered powder has a crystal phase of cerium hydroxide (Ce(OH)4). The cerium purity of the final product was about 94.6 %, and the recovery rate was 97.3 %.

Microstructure Prediction of Superalloy Nimonic 80A for Hot Closed Die Forging (열간 형단조 Nimonic 80A의 미세조직 변화 예측)

  • Jeong H. S.;Cho J. R.;Park H. C.;Lee S. Y.
    • Transactions of Materials Processing
    • /
    • v.14 no.4 s.76
    • /
    • pp.384-391
    • /
    • 2005
  • The nickel-based alloy Nimonic 80A possesses the excellent strength, and the resistance against corrosion, creep and oxidation at high temperature. Its products are used in aerospace engineering, marine engineering and power generation, etc. Control of forging parameters such as strain, strain rate, temperature and holding time is important because change of the microstructure in hot working affects the mechanical properties. Change of the microstructure evolves by recovery, recrystallization and grain growth phenomena. The dynamic recrystallization evolution has been studied in the temperature range of $950\~1250^{\circ}C$ and strain rate range of $0.05\~5s^{-1}$ using hot compression tests. The metadynamic recrystallization and grain growth evolution has been studied in the temperature range of $950\~1250^{\circ}C$ and strain rate range $0.05,\;5s^{-1}$, holding time range of 5, 10, 100, 600 sec using hot compression tests. Modeling equations are proposed to represent the flow curve, recrystallized grain size, recrystallized fraction and grain growth phenomena by various tests. Parameters in modeling equations are expressed as a function of the Zener-Hollomon parameter. The modeling equation for grain growth is expressed as a function of the initial grain size and holding time. The modeling equations developed were combined with thermo-viscoplastic finite element modeling to predict the microstructure change evolution during hot forging process. The grain size predicted from FE simulation results is compared with results obtained in field product.

A Study on Nano/micro Pattern Fabrication of Metals by Using Mechanical Machining and Selective Deposition Technique (기계적 가공과 무전해 선택적 증착기술을 이용한 나노/마이크로 금속패턴 제작에 관한 연구)

  • Cho S.H.;Youn S.W.;Kang C.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1507-1510
    • /
    • 2005
  • This study was carried out as a part of the research on the development of a maskless and electroless process for fabricating metal micro/nanostructures by using a nanoindenter and an electroless deposition technique. $2-\mu{m}-deep$ indentation tests on Ni and Cu samples were performed. The elastic recovery of the Ni and Cu was 9.30% and 9.53% of the maximum penetration depth, respectively. The hardness and the elastic modulus were 1.56 GPa and 120 GPa for Ni and 1.49 GPa and 100 GPa for Cu. The effect of single-point diamond machining conditions such as the Berkovich tip orientation (0, 45, and $90^{\circ}$) and the normal load (0.1, 0.3, 0.5, 1, 3, and 5 mN), on both the deformation behavior and the morphology of cutting traces (such as width and depth) was investigated by constant-load scratch tests. The tip orientation had a significant influence on the coefficient of friction, which varied from 0.52-0.66 for Ni and from 0.46-0.61 for Cu. The crisscross-pattern sample showed that the tip orientation strongly affects the surface quality of the machined area during scratching. A selective deposition of Cu at the pit-like defect on a p-type Si(111) surface was also investigated. Preferential deposition of the Cu occurred at the surface defect sites of silicon wafers, indicating that those defect sites act as active sites for the deposition reaction. The shape of the Cu-deposited area was almost the same as that of the residual stress field.

  • PDF

Determination of Cadmium, Copper, Lead, Nickel, and Zinc in Sediments by ID-ICP/MS (동위원소희석 질량분석법에 의한 저니토 중의 카드뮴, 구리, 납, 니켈, 아연의 정량)

  • Cho, Kyung-Haeng;Park, Chang-Joon;Suh, Jung-Kee;Han, Myoung-Sub
    • Analytical Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.297-303
    • /
    • 2000
  • Isotope-dilution inductively coupled plasma mass spectrometry was used to determine trace amounts of Cd, Cu, Pb, Ni and Zn in sediment. Sediment samples were dissolved by microwave digestion with addition of mixed acid ($HNO_3$, HF and $HClO_4$). Lead was determined after separation of alkaline and alkaline earth metals by an ammonium pyrrolidenedithiocarbarmate (APDC) solvent extraction. The other elements were determined after separation of iron, tin and titanium by hydroxide precipitation. Recovery efficiency of the analyte elements was not satisfactory, but most of matrix elements causing the isobaric interference could be effectively eliminated by the separation. Good agreement was achieved with the certified values in the analysis of the two sediment reference materials.

  • PDF

Chemical Leaching of Co, Cu, Ni, Al, Fe by Organic acid from Cobalt Concentrate (코발트 정광(精鑛)으로부터 유기산(有機酸)을 이용(利用)한 Co, Cu, Ni, Al, Fe의 화학적(化學的) 침출(浸出))

  • Ahn, Jae-Woo;Ahn, Hyo-Jin;Kim, Meong-Woon
    • Resources Recycling
    • /
    • v.20 no.6
    • /
    • pp.63-70
    • /
    • 2011
  • Enviromental friendly leaching process for the recovery of cobalt and copper from the cobalt concentrate was investigated by organic acids as a leaching reagent. The experimental parameters, such as organic acid type, concentrations of leachant, time and temperature of the reaction as well as the solid to liquid ratio were tested to obtain the optinum conditions for the leaching of cobalt and copper. The results showed that citric acid was the most effective leaching reagent among the organic acids used in this experiment. About 99% of cobalt, 95% of copper and 70% of nickel was dissolved by 2.0 M of citric acid. Addition of 3.0 vol.% of hydrogen perioxide was effective to enhance the leaching efficiency and the optinum temperature was found to be about $70^{\circ}C$.