• 제목/요약/키워드: Nickel electrode

검색결과 198건 처리시간 0.031초

니켈의 미세 전해 가공 시 전극 전위의 선정 (Determination of Electrode Potential in Micro Electrochemical Machining of Nickel)

  • 남호성;박병진;김보쳔;주종남
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.585-588
    • /
    • 2005
  • The dissolution characteristic of metal shows the different tendency according to the applied electrical potential, the kind of electrolyte and pH value, etc. In the micro electrochemical machining (ECM), unfavorable oxide/passive layer formation and overall corrosion of electrodes must be prevented. The anodic polarization curve of nickel has distinct three dissolution regions, i.e. two active regions and the transpassive dissolution region. In this paper, the stable electrode potentials of workpiece and tool were determined in sulfuric acid and hydrochloric acid solution, respectively. In each solution, different machining property was shown and possible electrochemical reactions were discussed. On the basis of this experiment, the methodology to obtain the proper electrode potential was suggested.

  • PDF

Nickel Hexacyanoferrate 이온교환체의 전기화학적 특성에 관한 연구 (A Study on the Electrochemical Characteristics of the Nickel Hexacyanoferrate Ion Exchanger)

  • 황영기
    • 한국산업융합학회 논문집
    • /
    • 제19권4호
    • /
    • pp.198-205
    • /
    • 2016
  • For the study on the ion exchange of nickel hexacyanoferrate(NiHCNFe) electrode with the several cations, the film of hexacyanoferrate was prepared on the bare nickel surface by the electrochemical and chemical methods in the solution composed with 5mM K3Fe(CN)6 and 100mM KNO3. To compare the capability of the ion exchange of NiHCNFe film electrode, the repeated cyclic voltammograms were measured in the 0.5M cation nitrate solutions at $25^{\circ}C$ and pH7. It was found that the capacity of the electrochemically derivatized NiHCNFe reduced in the rate of 0.5~0.7%/cycle and was nearly exhausted at the 150th potential cycle. Better result was obtained from that the capacity loss of the chemically assembled NiHCNFe was less than 0.02%/cycle for 5,000cycles. Furthermore, the residual capacity was more than 30% at the 5,000th cycle.

고밀도 수산화니켈 분말의 제조에 관한 연구-I (Fabrication of High-Density Nickel Hydroxide Powder-I)

  • 신동엽;조원일;신치범;조병원;강탁;윤경석
    • 한국표면공학회지
    • /
    • 제28권2호
    • /
    • pp.92-100
    • /
    • 1995
  • To increase the capacity of positive electrode materials for matching the high capacity negative electrode materials in alkaline rechargeable batteries, high-density nickel hydroxide powders were made through a continuous process from nickel sulfate reacted with ammonia and sodium hydroxidc. The effect of operating conditions on structure, shape, size distribution, apparent density and tap density of powders were investigated. Crystal structure of nickel hydroxide powder was hcp according to Bravais Lattice. The increase of mean residence time promoted the growth of (101) plane. The shape of powder was nearly spherical. Their size was in the range of $2~50\mu\textrm{m}$. The size distribution of the powders prepared was narrower than that of commercially obtained nickel hydroxide. Apparent density and tap density were 1.6~1.7g/cc and 2.0~2.1g/cc, respectively.

  • PDF

Electrochemical Oxidation of Ethanol at Nickel Hydroxide Electrodes in Alkaline Media Studied by Electrochemical Impedance Spectroscopy

  • Kim, Jae-Woo;Park, Su-Moon
    • 전기화학회지
    • /
    • 제8권3호
    • /
    • pp.117-124
    • /
    • 2005
  • Electrochemical oxidation of ethanol at nickel electrodes has been studied in 1 M KOH solution containing 0.20M ethanol using electrochemical impedance spectroscopy. Equivalent circuits have been worked out by simulating the impedance data, and the results were used to model the oxidation of ethanol as well as the passivation of the electrode. The maximum rate of oxidation of $Ni(OH)_2$ to NiOOH was observed at about 0.37V vs. Ag/AgCl reference electrode, while the maximum rate of ethanol oxidation at the Ni electrode was observed at about 0.42V, The charge-transfer resistance for oxidation of the electrode itself became smaller in the presence of ethanol than in its absence. These results suggest that the $\beta-Ni(OH)_2/\beta-NiOOH$ redox couple is acting as an effective electron transfer mediator far ethanol oxidation. The kinetic parameters also were obtained by the experimental and simulated results.

유기물 광분해용 니켈-TiO2 복합도금 전극 특성에 관한 연구 (Characterization of Nickel Composite Plating with TiO2 Particles for Photolysis of Organic Compound)

  • 최철영;조승찬;류영복;김영석;김형찬;김양도
    • 한국표면공학회지
    • /
    • 제40권3호
    • /
    • pp.125-130
    • /
    • 2007
  • Many fundamental studies have been carried out regarding waste water and hazardous gas treatment technology using the photolysis effect of $TiO_2$. However, photolysis of both organic and organic-inorganic binders immobilizing $TiO_2$ makes permanent use impossible. In this study we manufactured a catalytic electrode by nickel-$TiO_2$ composite plating in order to immobilize $TiO_2$. The surface properties according to the current density changes of cathode and concentration changes of $TiO_2$ powder in nickel plating bath has been analysed with EDX, XRF, SEM, Raman spectrometer etc. The characterization of the catalytic electrode in decomposition of organic compound has been obtained by using UV-Visible spectrophotometer through analysing concentration changes of methyl orange solution containing the catalytic electrode vs. time with projecting UV-light in the solution. The study shows that a catalytic electrode of nickel-$TiO_2$ composite plating with high-efficiency in decompostion of organic compound has been formed under high concentration of $TiO_2$ powder and low current density of cathode.

Lithium Diffusivity of Tin-based Film Model Electrodes for Lithium-ion Batteries

  • Hong, Sukhyun;Jo, Hyuntak;Song, Seung-Wan
    • Journal of Electrochemical Science and Technology
    • /
    • 제6권4호
    • /
    • pp.116-120
    • /
    • 2015
  • Lithium diffusivity of fluorine-free and -doped tin-nickel (Sn-Ni) film model electrodes with improved interfacial (solid electrolyte interphase (SEI)) stability has been determined, utilizing variable rate cyclic voltammetry (CV). The method for interfacial stabilization comprises fluorine-doping on the electrode together with the use of electrolyte including fluorinated ethylene carbonate (FEC) solvent and trimethyl phosphite additive. It is found that lithium diffusivity of Sn is largely dependent on the fluorine-doping on the Sn-Ni electrode and interfacial stability. Lithium diffusivity of fluorine-doped electrode is one order higher than that of fluorine-free electrode, which is ascribed to the enhanced electrical conductivity and interfacial stabilization effect.

A Newly Designed Fixed Bed Redox Flow Battery Based on Zinc/Nickel System

  • Mahmoud, Safe ELdeen M.E.;Youssef, Yehia M.;Hassan, I.;Nosier, Shaaban A.
    • Journal of Electrochemical Science and Technology
    • /
    • 제8권3호
    • /
    • pp.236-243
    • /
    • 2017
  • A fixed-bed zinc/nickel redox flow battery (RFB) is designed and developed. The proposed cell has been established in the form of a fixed bed RFB. The zinc electrode is immersed in an aqueous NaOH solution (anolyte solution) and the nickel electrode is immersed in the catholyte solution which is a mixture of potassium ferrocyanide, potassium ferricyanide and sodium hydroxide as the supporting electrolyte. In the present work, the electrode area has been maximized to $1500cm^2$ to enforce an increase in the energy efficiency up to 77.02% at a current density $0.06mA/cm^2$ using a flow rate $35cm^3/s$, a concentration of the anolyte solution is $1.5mol\;L^{-1}$ NaOH and the catholyte solution is $1.5mol\;L^{-1}$ NaOH as a supporting electrolyte mixed with $0.2mol\;L^{-1}$ equimolar of potassium ferrocyanide and potassium ferricyanide. The outlined results from this study are described on the basis of battery performance with respect to the current density, velocity in different electrolytes conditions, energy efficiency, voltage efficiency and power of the battery.

Activated Carbon-Nickel (II) Oxide Electrodes for Capacitive Deionization Process

  • Gandionco, Karl Adrian;Kim, Jin Won;Ocon, Joey D.;Lee, Jaeyoung
    • 공업화학
    • /
    • 제31권5호
    • /
    • pp.552-559
    • /
    • 2020
  • Activated carbon-nickel (II) oxide (AC-NiO) electrodes were studied as materials for the capacitive deionization (CDI) of aqueous sodium chloride solution. AC-NiO electrodes were fabricated through physical mixing and low-temperature heating of precursor materials. The amount of NiO in the electrodes was varied and its effect on the deionization performance was investigated using a single-pass mode CDI setup. The pure activated carbon electrode showed the highest specific surface area among the electrodes. However, the AC-NiO electrode with approximately 10 and 20% of NiO displayed better deionization performance. The addition of a dielectric material like NiO to the carbon material resulted in the enhancement of the electric field, which eventually led to an improved deionization performance. Among all as-prepared electrodes, the AC-NiO electrode with approximately 10% of NiO gave the highest salt adsorption capacity and charge efficiency, which are equal to 7.46 mg/g and 90.1%, respectively. This finding can be attributed to the optimum enhancement of the physical and chemical characteristics of the electrode brought by the addition of the appropriate amount of NiO.

인이 도핑된 NiCo2O4 전극 제조 공정의 간소화를 통한 전극 특성의 변화 (Variations in electrode characteristics through simplification of phosphorus-doped NiCo2O4 electrode manufacturing process)

  • 이석희;차현진;박정환;손영국;황동현
    • 한국표면공학회지
    • /
    • 제56권5호
    • /
    • pp.299-308
    • /
    • 2023
  • In this study, phosphorus (P)-doped nickel cobaltite (P-NiCo2O4) and nickel-cobalt layered double hydroxide (P-NiCo-LDH) were synthesized on nickel (Ni) foam as a conductive support using hydrothermal synthesis. The thermal properties, crystal structure, microscopic surface morphology, chemical distribution, electronic state of the constituent elements on the sample surface, and electrical properties of the synthesized P-NiCo2O4 and P-NiCo-LDH samples were analyzed using thermogravimetric analysis-differential scanning calorimetry (TGA-DSC), X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS). The P-NiCo2O4 electrode exhibited a specific capacitance of 1,129 Fg-1 at a current density of 1 Ag-1, while the P-NiCo-LDH electrode displayed a specific capacitance of 1,012 Fg-1 at a current density of 1 Ag-1. When assessing capacity changes for 3,000 cycles, the P-NiCo2O4 electrode exhibited a capacity retention rate of 54%, whereas the P-NiCo-LDH electrode showed a capacity retention rate of 57%.

Study of Electrochemical Cs Uptake Into a Nickel Hexacyanoferrate/Graphene Oxide Composite Film

  • Choi, Dongchul;Cho, Youngjin;Bae, Sang-Eun;Park, Tae-Hong
    • Journal of Electrochemical Science and Technology
    • /
    • 제10권2호
    • /
    • pp.123-130
    • /
    • 2019
  • We investigated the electrochemical behavior of an electrode coated with a nickel hexacyanoferrate/graphene oxide (NiPB/GO) composite to evaluate its potential use for the electrochemical separation of radioactive Cs as a promising approach for reducing secondary Cs waste after decontamination. The NiPB/GO-modified electrode showed electrochemically switched ion exchange capability with excellent selectivity for Cs over other alkali metals. Furthermore, the repetitive ion insertion and desertion test for assessing the electrode stability showed that the electrochemical ion exchange capacity of the NiPB/GO-modified electrode increased further with potential cycling in 1 M of $NaNO_3$. In particular, this electrochemical treatment enhanced Cs uptake by nearly two times compared to that of NiPB/GO and still retained the ion selectivity of NiPB, suggesting that the electrochemically treated NiPB/GO composite shows promise for nuclear wastewater treatment.