• Title/Summary/Keyword: Nickel base alloys

Search Result 32, Processing Time 0.026 seconds

CYTOTOXICITY OF DENIAL CAST BASE METAL ALLOYS ON HUMAN ORAL KERATINOCYTES (구강점막 상피세포에 대한 치과 주조용 비귀금속 합금의 세포독성)

  • Choi, Young-Jin;Yook, Jong-In;Chung, Moon-Kyu
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.6
    • /
    • pp.717-729
    • /
    • 1999
  • Although many studies on the cytotoxicity of the dental cast base metal alloys and their components have been carried out, the results are rather conflicting because of the different type of cells used and the various experimental procedures taken. Recently a number of scientists have claimed that it would be preferable to focus on the use of cells from relevant specific location of the human bodies. Consequently, the primary cultured oral keratinocyte derived from oral mucous along with nickel chloride and several of widely used dental cast base metal alloys(two Ni-Cr alloys and one Co-Cr alloy)in domestic were selected for this study, from which 1) The amounts of released metal ions were determined using atomic absorption spectrometry, 2) The cytotoxicity of nickel chloride and dental cast base metal alloys was evaluated via MTT assay, and finally, 3) The amounts of released metal ions and the cytotoxicity of nickel chloride were correlated with the cytotoxicity of dental cast base metal alloys And, the results were summarized as follows; 1. Nickel ion from Ni-Cr alloys and Cobalt ion from Co-Cr alloys resulted in maximum releasing rate during first 2h hours, followed by a decrease in releasing rate with time. Chromium ion were found to be minimal in all alloys. 2. In cytotoxic test. with $40{\mu}M,\;80{\mu}M$ of nickel chloride, there were observed an increase in the relative cell number compared to control samples after 24 hours. With $160{\mu}M$, there was found to be no difference in the relative cell number with control, except that 48 hour showed a increase in relative cell number. With $320{\mu}M$, the relative cell number remained constant and decreased after 48 hours, and with $640{\mu}M$, a continuing decrease in relative cell number was observed throughout test period. 3 The sensitivity of primary cultured oral epithelium to nickel was lower compared to the cells used in other studies. 4. CB-80 Soft and Regalloy showed no cytotoxicity to primary cultured oral epithelium and New crown resulted in a slight cytotoxicity. In conclusion, it was shown that the primary cultured oral keratinocytes could be applied successfully as testing cells in cytotoxicity test. Futhermore, the dental cast base metal alloys used in this study were found to be biocompatible.

  • PDF

An experimental study of the strength and internal structure of solder joint of fixed partial denture (가공의치(架工義齒) 납착부(蠟着部)의 강도(强度)와 내부구조(內部構造)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Park, Sang-Nam;Kay, Kee-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.23 no.1
    • /
    • pp.39-59
    • /
    • 1985
  • The purpose of this study was to investigate how gap distances of 0.13mm, 0.15mm, 0.20mm, and 0.30mm affects solder joint strength from gold alloys and nickel-chromium base alloys and to examine the composition of solder gold, the solder joint of gold alloys and nickel-chromium base alloys. The tensile test specimens were prepared in the split stainless steel mold with a half dumbbell shape 2.5mm in diameter and l2mm in length. 6 pairs of specimens of each gap distance group of gold alloys and nickel-chromium base alloys were made and 48 pairs of all specimens were soldered with solder gold of 666 fineness. All soldered specimens were machined to a uniform diameter and then a tensile load was applied at a cross-head speed of 0.10mm/min using Instron Universal Testing Machine, Model 1115. The fractured specimens at solder gold of solder joint fracture with each gap distance of 0.13mm, 0.15mm, 0.20mm, and 0.30mm were examined under the Scanning Electron Microscope, JSM-35c and the composition of solder gold, the solder joint of gold alloys and nickel-chromium base alloys was analyzed by Electron Probe Micro Analyzer. The results of this study were obtained as follows: 1. In case of soldering of gold alloys, the tensile strength between gold alloys showed $37.33{\pm}2.52kg/mm^2$ at 0.13, $39.14{\pm}3.35kg/mm^2$ at 0.15mm, $43.76{\pm}2.97kg/mm^2$ at 0.20mm, and $49.18{\pm}4.60kg/mm^2$ at 0.30mm. There was statistically significant difference at each gap distance, and so the greater increase of gap distance showed the greater tensile strength. 2. In case of soldering of nickel-chromium base alloys, the tensile strength between nickel-chromium base alloys showed $34.84{\pm}4.26kg/mm^2$ at 0.13mm, $37.25{\pm}2.49kg/mm^2$ at 0.15mm, $42.91{\pm}4.32kg/mm^2$ at 0.20mm, and $46.93{\pm}4.21kg/mm^2$ at 0.30mm. There was not statistically significant difference only between 0.13mm and 0.15mm and bet ween 0.20 mm and 0.30mm, but generally the greater increase of gap distance showed the greater tensile strength. 3. The greater increase of gap distance shoed less porosities in solder gold at solder joint fracture. 4. In solder gold Au, Cu, Ag, Zn, and Sn were composed and Au and Cu were mostly distributed uniformly. 5. In solder joints of solder gold and gold alloys Au, Cu, Ag, Zn, and Sn were composed in solder gold and Au, Cu, Ag, Pt, and Pd were composed in gold alloys. Au and Cu of solder gold and gold alloys were mostly distributed uniformly and the diffusion of other elements except Pt and Pd around the solder joint was not almost found. In solder joints of solder gold and nickel-chromium base alloys Au, Cu, Ag, Zn, and Sn were composed in solder gold and Ni, Cr, and Al were composed in nickel-chromium base alloys. Au and Cu of solder gold and Ni and Cr of nickel-chromium base alloys were mostly distributed uniformly and the diffusion of other elements except Cr around the solder joint was not almost found.

  • PDF

Effect of Precipitate on the Electrochemical Potentiokinetic Reactivation Behaviors of Stainless Steels and Nickel Base Alloys

  • Wu, Tsung-Feng;Chen, Tzu-Sheng;Tsai, Wen-Ta
    • Corrosion Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.59-67
    • /
    • 2003
  • Electrochemical potentiokinetic reactivation (EPR) tests are used to evaluate the degree of sensitization (DOS) of stainless steels and nickel base alloys. The validity of EPR test to detect DOS of these alloys, however, depends all the electrolyte composition employed. The existence of precipitates such as NbC, and TiC, etc. in the alloys also affects the reactivation behaviors of these alloys. In this investigation, the reactions involved during EPR processes are analyzed. In 0.5 M $H_2SO_4$+ 0.01 M KSCN electrolyte, a reactivation peak associated with the localized attack around NbC, different from that of intergranular corrosion, is observed for the solution annealed 347 SS. For solution annealed Alloy 600, matrix corrosion and localized attack around TiC with distinct anodic peaks appeared in the EPR curves are seen in the $H_2SO_4$+ KSCN electrolyte. With proper adjustment of elect rolyte composition, the contribution from intergranular corrosion, as a result of chromium carbide precipitation along the grain boundaries, can be distingui shed from the matrix and localized corrosion for the sensitized Alloy 600.

Physico-mechanical properties and prosthodontic applications of Co-Cr dental alloys: a review of the literature

  • Al Jabbari, Youssef S.
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.2
    • /
    • pp.138-145
    • /
    • 2014
  • Cobalt-Chromium (Co-Cr) alloys are classified as predominantly base-metal alloys and are widely known for their biomedical applications in the orthopedic and dental fields. In dentistry, Co-Cr alloys are commonly used for the fabrication of metallic frameworks of removable partial dentures and recently have been used as metallic substructures for the fabrication of porcelain-fused-to-metal restorations and implant frameworks. The increased worldwide interest in utilizing Co-Cr alloys for dental applications is related to their low cost and adequate physico-mechanical properties. Additionally, among base-metal alloys, Co-Cr alloys are used more frequently in many countries to replace Nickel-Chromium (Ni-Cr) alloys. This is mainly due to the increased concern regarding the toxic effects of Ni on the human body when alloys containing Ni are exposed to the oral cavity. This review article describes dental applications, metallurgical characterization, and physico-mechanical properties of Co-Cr alloys and also addresses their clinical and laboratory behavior in relation to those properties.

Low Temperature Interface Modification: Electrochemical Dissolution Mechanism of Typical Iron and Nickel Base Alloys

  • Jiangwei Lu;Zhengyang Xu;Tianyu Geng
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.220-241
    • /
    • 2024
  • Due to its unique advantages, electrochemical machining (ECM) is playing an increasingly significant role in the manufacture of difficult-to-machine materials. Most of the current ECM research is conducted at room temperature, with studies on ECM in a cryogenic environment not having been reported to date. This study is focused on the electrochemical dissolution characteristics of typical iron and nickel base alloys in NaNO3 solution at low temperature (-10℃). The polarization behaviors and passive film properties were studied by various electrochemical test methods. The results indicated that a higher voltage is required for decomposition and more pronounced pitting of their structures occurs in the passive zone in a cryogenic environment. A more in-depth study of the composition and structure of the passive films by X-ray photoelectron spectroscopy and electrochemical impedance spectroscopy showed that the passive films of the alloys are modified at low temperature, and their capacitance characteristics are more prominent, which makes corrosion of the alloys more likely to occur uniformly. These modified passive films have a huge impact on the surface morphologies of the alloys, with non-uniform corrosion suppressed and an improvement in their surface finish, indicating that lowering the temperature improves the localization of ECM. Together with the cryogenic impact of electron energy state compression, the accuracy of ECM can be further improved.

SCC Mechanism of Ni Base Alloys in Lead Contaminated Water

  • Hwang, Seong Sik;Kim, Dong Jin;Lim, Yun Soo;Kim, Joung Soo;Park, Jangyul;Kim, Hong Pyo
    • Corrosion Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.187-191
    • /
    • 2008
  • Transgranular stress corrosion cracking of nickel base alloys was reported by Copson and Dean in 1965. Study to establish this cracking mechanism needs to be carried out. Laboratory stress corrosion tests were performed for mill annealed(MA) or thermally treated(TT) steam generator tubing materials in a high temperature water containing lead. An electrochemical interaction of lead with the alloying elements of SG tubings was also investigated. Alloy 690 TT showed a transgranular stress corrosion cracking in a 40% NaOH solution with 5000 ppm of lead, while intergranular stress corrosion racking was observed in a 10% NaOH solution with 100 ppm lead. Lead seems to enhance the disruption of passive film and anodic dissolution of alloy 600 and alloy 690. Crack tip blunting at grain boundary carbides plays a role for the transgranular stress corrosion cracking.

Design of Nickel Alloys Using the Theoretical Values Calculated from the Electronic State Energies (에너지 전자상태 계산으로 도출된 이론값을 이용한 니켈 합금 설계)

  • Baek, Min-Sook;Kang, Pub-Sung;Baek, Kyeong-Cheol;Kim, Byung-Il;Yoon, Dong-Joo
    • Korean Journal of Materials Research
    • /
    • v.25 no.11
    • /
    • pp.642-646
    • /
    • 2015
  • Super alloys, which can be divided into three categories, i.e. Ni-base, Co-base, and Fe-base alloys, are widely used for high temperature applications. Since superalloys contain many alloying elements and precipitates, their chemistry and processing parameters need to be carefully designed. In this study, we designed a new Ni alloy to prevent corrosion due to water vapor and gases at high temperatures. The new alloy was designed using the theoretical value of the resulting energy electronic state calculation($DV-X{\alpha}$ method). The components that were finally used were Cr, Mo, and Ti, with Ni as a base. For these alloys, elements were selected in order to compare their values with that of the average theoretical basis for an Inconel 625 alloy. Finally, two kinds of Ni alloy were designed: Ni-28Cr-4Mo-2Ti and Ni-20Cr-10Mo-1Ti.

CORROSION BEHAVIOR OF NI-BASE ALLOYS IN SUPERCRITICAL WATER

  • Zhang, Qiang;Tang, Rui;Li, Cong;Luo, Xin;Long, Chongsheng;Yin, Kaiju
    • Nuclear Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.107-112
    • /
    • 2009
  • Corrosion of nickel-base alloys (Hastelloy C-276, Inconel 625, and Inconel X-750) in $500^{\circ}C$, 25MPa supercritical water (with 10 wppb oxygen) was investigated to evaluate the suitability of these alloys for use in supercritical water reactors. Oxide scales formed on the samples were characterized by gravimetry, scanning electron microscopy/energy dispersive spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The results indicate that, during the 1000h exposure, a dense spinel oxide layer, mainly consisting of a fine Cr-rich inner layer ($NiCr_{2}O_{4}$) underneath a coarse Fe-rich outer layer ($NiFe_{2}O_{4}$), developed on each alloy. Besides general corrosion, nodular corrosion occurred on alloy 625 possibly resulting from local attack of ${\gamma}$" clusters in the matrix. The mass gains for all alloys were small, while alloy X -750 exhibited the highest oxidation rate, probably due to the absence of Mo.