• 제목/요약/키워드: Nickel alloy

검색결과 393건 처리시간 0.023초

INVESTIGATION OF "STEPPED" DISCHARGE CURVES IN SINTERED TYPE NICKEL-CADMIUM CELL

  • SASAKI, Y.;YAMASHITA, T.
    • 한국표면공학회지
    • /
    • 제32권3호
    • /
    • pp.360-362
    • /
    • 1999
  • Formation of the nickel-cadmium alloy in the negative electrode of nickel-cadmium cell subjected to continuous charging at elevated temperatures ($40~45^{\circ}C$) is shown to be one of the causes of the 'stepped' discharge curves. The alloy has been characterized by electrode potential measurement and X-ray diffraction method. The potential lowering during discharge is related to discharge of the alloy. X -ray diffraction suggests that the nickel-cadmium alloy can be formed during charge in negative electrode by interaction of the two metals. Addition of Ni $(OH)_2$ into $Cd{\;}(OH)_2$ active material is found to form the alloy more readily than sintered negative electrode alone.ode alone.

  • PDF

니켈-텅스텐 합금 결합상 적용 고경도 초경합금 (High-Hardness Cemented Carbide With Nickel-Tungsten Alloy Binder)

  • 권한중
    • 한국분말재료학회지
    • /
    • 제31권4호
    • /
    • pp.318-323
    • /
    • 2024
  • Cemented carbide for cutting tools, which is composed of carbide as a hard phase and metallic component as a metallic phase, mainly uses cobalt as the metallic phase due to the excellent mechanical properties of cobalt. However, as the demand for machining difficult-to-machine materials such as titanium and carbon fiber-reinforced plastics has recently increased, the development of high-hardness cemented carbide is necessary and the replacement of cobalt metal with a high-hardness alloy is required. In this study, we would like to introduce high-hardness cemented carbide fabricated using nickel-tungsten alloy as the metallic phase. First, nickel-tungsten alloy powder of the composition for formation of intermetallic compound confirmed through thermodynamic calculations was synthesized, and cemented carbide was prepared through the sintering process of tungsten carbide and the synthesized alloy powder. Through evaluating the mechanical properties of high-hardness cemented carbide with the nickel-tungsten alloy binder, the possibility of producing high-hardness cemented carbide by using the alloys with high-hardness was confirmed.

FORMATION OF AMORPHOUS NICKEL-PHOSPHORUS ALLOY FILM

  • Yamashita, Tsugito;Komiyama, Toyohiko
    • 한국표면공학회지
    • /
    • 제29권6호
    • /
    • pp.720-723
    • /
    • 1996
  • The behavior of electrodeposition of amorphous nickel-phosphorus has been studied from the point of deposition mechanism, kinetic parameters, morphology and formation of alloy films. The electorode reaction and electrode kinetics of deposition of nickel were significantly influenced by the content of phosphorus. The cathodic deposition of nickel-phosphorus alloy might be governed by the diffusion process of phosphorous acid. The direction of growth layer of the nickel-phosphorus alloy was different with substrate material. The formation of nickel-phosphorus alloy films was affected considerably by the solution compositions, electrolytic conditions and properties of the material as an underlayer.

  • PDF

Corrosion Behavior of Nickel-Plated Alloy 600 in High Temperature Water

  • Kim, Ji Hyun;Hwang, Il Soon
    • Corrosion Science and Technology
    • /
    • 제7권1호
    • /
    • pp.61-67
    • /
    • 2008
  • In this paper, electrochemical and microstructural characteristics of nickel-plated Alloy 600 were investigated in order to identify the performance of electroless Ni-plating on Alloy 600 in high-temperature aqueous condition with the comparison of electrolytic nickel-plating. For high temperature corrosion test of nickel-plated Alloy 600, specimens were exposed for 770 hours to typical PWR primary water condition. During the test, open circuit potentials (OCP's) of all specimens were measured using a reference electrode. Also, resistance to flow accelerated corrosion (FAC) test was examined in order to check the durability of plated layers in high-velocity flow environment at high temperature. After exposures to high flow rate aqueous condition, the integrity of surfaces was confirmed by using both scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). For the field application, a remote process for electroless nickel-plating was demonstrated using a plate specimen with narrow gap on a laboratory scale. Finally, a practical seal design was suggested for more convenient application.

금 합금 도금층의 접촉저항에 미치는 합금원소의 종류 및 Thermal Aging의 영향 (Effect of Alloying Elements and Thermal Aging on the Contact Resistance of Electroplated Gold Alloy Layers)

  • 이지웅;손인준
    • 한국표면공학회지
    • /
    • 제46권6호
    • /
    • pp.235-241
    • /
    • 2013
  • In this study, the effects of alloying elements and thermal aging on the contact resistance of electroplated gold alloy layers were investigated by surface analysis using X-ray photoelectron spectroscopy (XPS). The contact resistance of Au-Ag alloy was lower than that of Au-Ni or Au-Co alloy after thermal aging. The XPS results show that nickel and oxygen present as nickel oxides such as NiO and $Ni_2O_3$ on the surface of gold layers after thermal aging. The increase in the contact resistance after thermal aging is attributable to the nickel oxide layer formed on the surface of the gold layers. The content of nickel diffused from the underlayer during the thermal aging was high in the order of Au-Co, Au-Ni and Au-Ag alloy because the area of grain boundary was large in the order of Au-Ag, Au-Ni and Au-Co alloy.

The tensile deformation and fracture behavior of a magnesium alloy nanocomposite reinforced with nickel

  • Srivatsan, T.S.;Manigandan, K.;Godbole, C.;Paramsothy, M.;Gupta, M.
    • Advances in materials Research
    • /
    • 제1권3호
    • /
    • pp.169-182
    • /
    • 2012
  • In this paper the intrinsic influence of micron-sized nickel particle reinforcements on microstructure, micro-hardness tensile properties and tensile fracture behavior of nano-alumina particle reinforced magnesium alloy AZ31 composite is presented and discussed. The unreinforced magnesium alloy (AZ31) and the reinforced nanocomposite counterpart (AZ31/1.5 vol.% $Al_2O_3$/1.5 vol.% Ni] were manufactured by solidification processing followed by hot extrusion. The elastic modulus and yield strength of the nickel particle-reinforced magnesium alloy nano-composite was higher than both the unreinforced magnesium alloy and the unreinforced magnesium alloy nanocomposite (AZ31/1.5 vol.% $Al_2O_3$). The ultimate tensile strength of the nickel particle reinforced composite was noticeably lower than both the unreinforced nano-composite and the monolithic alloy (AZ31). The ductility, quantified by elongation-to-failure, of the reinforced nanocomposite was noticeably higher than both the unreinforced nano-composite and the monolithic alloy. Tensile fracture behavior of this novel material was essentially normal to the far-field stress axis and revealed microscopic features reminiscent of the occurrence of locally ductile failure mechanisms at the fine microscopic level.

니켈 합금 용접이 금형 표면의 균열 발생에 미치는 영향 (Influence of Nickel Alloy Weld on the Mold Surface Cracks)

  • 정혜동;이지훈;홍민성
    • 한국생산제조학회지
    • /
    • 제20권4호
    • /
    • pp.478-483
    • /
    • 2011
  • Cast mold has low wear-resistance comparing with other alloyed molds which result in lower production rate and high cost of products. Recently, various weld methods are being applied to increase the wear-resistance of molds and to extend mold life. Among them, nickel alloy weld process increases the hardness irrelevant to its machinability and creates very uniform structures. In addition, it causes better wear-resistance and reduces shrinkage defects. In this paper, we analyze the mold surface cracks welded by nickel alloy and propose the methods to improve the mold surface and its wear-resistance. It has been found that nickel alloy weld does not affect the inside crack of mold but has an influence on the surface crack seriously. Results show that the start and growth of fatigue cracks have been delayed about 3 times and reduced approximately 75%, respectively, and the mold surface cracks are decreased about 5.7 times.

니켈기 내열합금 절삭시 공구에 따른 마모와 칩생성 (Wear and chip Formation by the tool on cutting Nickel-based Heat Resisting Alloy)

  • 윤주식
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 춘계학술대회논문집 - 한국공작기계학회
    • /
    • pp.264-269
    • /
    • 2000
  • Nickel-based heat resisting alloys are commonly used for high temperature applications such as in aircraft engines and gas turbines. In this paper, the machinability of Nickel-based heat resisting alloy was investigated with respect to the wear and the chip formation by tool type and cutting condition. Relationship between three types of tool and chip formation was experimentally investigated. Among the three types of tool tested, coated tools(CVD, PVD) are available for the difficult-to-cut-materials such as Nickel-based heat resisting alloy and etc..

  • PDF

니켈분말 첨가에 따른 MmNi5계 수소저장합금의 열역학 및 전기화학적 특성 (A Study on the Thermodynamic and Electrochemical Properties of MmNi5 System Hydrogen Absorbing Alloys Mixed with Nickel Powder)

  • 최원경;조태환
    • 한국수소및신에너지학회논문집
    • /
    • 제7권1호
    • /
    • pp.63-69
    • /
    • 1996
  • Effect of nickel powder to added to the hydrogen absorbing alloy electrode of $MmNi_{4.5}-xCoxMn_{0.3}Al_{0.2}$ system alloy was investigated. The addition of nickel powder was effective for the improvement of discharging characteristic. It was found that the discharge capacity was 310mAhig when the alloy negative electrode was mixed $MmNi_{3.75}CO_{0.75}Mn_{0.3}Al_{0.2}$ and nickel powder with a mix of one to three. Still another, we have investigated thermodynamic stability of hydrogen in the alloy negative electrode. As a result, enthalpy of hydrogen and hydrogen equilibrium pressure in the alloy negative electrode were a suitable value to easy hydrogen absorption-desorption.

  • PDF

니켈-크롬 합금 강바를 이용한 교각부 내진성능향상 모델링에 관한 연구 (Anti-seismic Capacity Improvement Modelling of Bridge Pier by Nickel -chrome Alloy Bar)

  • 장일영;송재호;송석민;이승영;유정수
    • 한국재난관리표준학회지
    • /
    • 제2권2호
    • /
    • pp.63-68
    • /
    • 2009
  • 신설된 교량의 경우 최근 개정된 도로교 설계기준에 의하여 내진설계를 수행하여 시공되고 있으나, 내진설계규정이 적용되기 이전에 시공되어 사용 중인 철근콘크리트 교각의 경우에는 지진에 의한 횡하중에 대해 취약할 수 있다. 따라서 본 연구에서는 교각의 내진보강을 위해 니켈-크롬 합금강바의 물리적 특성을 파악하고, 니켈-크롬 합금강바를 보강한 교각부의 지진에 의한 횡하중 작용시의 거동을 MIDAS프로그램을 통해 모델링하여 내진보강 전후의 교각 변위와 응력변화를 비교, 검토하였다. 이와 같은 연구를 통해 니켈-크롬 합금강바가 다른 보강재에 비해 경제적인 면과 기능적인 면을 모두 만족시킬 수가 있음을 알 수 있었고, MIDAS프로그램을 이용한 모델링을 통해 니켈-크롬 합금 강바의 내진보강 효과를 확인할 수가 있었다.

  • PDF