DOI QR코드

DOI QR Code

High-Hardness Cemented Carbide With Nickel-Tungsten Alloy Binder

니켈-텅스텐 합금 결합상 적용 고경도 초경합금

  • Hanjung Kwon (Division of Advanced Materials Engineering, Jeonbuk National University)
  • 권한중 (전북대학교 신소재공학부)
  • Received : 2024.08.01
  • Accepted : 2024.08.24
  • Published : 2024.08.28

Abstract

Cemented carbide for cutting tools, which is composed of carbide as a hard phase and metallic component as a metallic phase, mainly uses cobalt as the metallic phase due to the excellent mechanical properties of cobalt. However, as the demand for machining difficult-to-machine materials such as titanium and carbon fiber-reinforced plastics has recently increased, the development of high-hardness cemented carbide is necessary and the replacement of cobalt metal with a high-hardness alloy is required. In this study, we would like to introduce high-hardness cemented carbide fabricated using nickel-tungsten alloy as the metallic phase. First, nickel-tungsten alloy powder of the composition for formation of intermetallic compound confirmed through thermodynamic calculations was synthesized, and cemented carbide was prepared through the sintering process of tungsten carbide and the synthesized alloy powder. Through evaluating the mechanical properties of high-hardness cemented carbide with the nickel-tungsten alloy binder, the possibility of producing high-hardness cemented carbide by using the alloys with high-hardness was confirmed.

Keywords

Acknowledgement

이 논문은 2024년도 정부(산업통상자원부)의 재원으로 한국에너지기술평가원의 지원(20228A10100030/20217510100020)에 의하여 연구되었습니다.

References

  1. L. E. Toth and J. L. Margrave, Transition metal carbides and nitrides, 1st edAcademic Press, New York and London (1971) 9.
  2. P. Ettmayer: Annu. Rev. Mater. Sci., 19 (1989) 145.
  3. E. E. Holmstrom, R. Lizarraga and D. Linder: Appl. Mater. Today., 12 (2018) 322.
  4. W. Wang, Y. Jinke and Z. Qijie: J Magn. Magn. Mater., 346 (2013) 103.
  5. H. Suzuki, K. Hayashi and T. Yamamoto: J. Jpn. Soc. Powder Metal., 13 (1966) 290.
  6. E. N. Silva, A. A. A. Santos and R. M. Nascimento: Int. J. Refract. Met. Hard Mater., 101 (2021) 105669.
  7. R. Lauwerys and D. Lison: Sci. Total Environ., 150 (1994) 1.
  8. H. Yukun, Z. Zhifei, C. Yijun, H. Guihong, P. Weijun, Z. Xiaofeng, Z. Ting-an and D. Zhihe: Hydrometallurgy., 193 (2020) 105327.
  9. P. Pereira, A. M. Ferro Rocha, J. Sacramento, F. J. Oliveira, A. M. R. Senos, L. F. Malheiros and A. C. Bastos: Int. J. Refract. Met. Hard Mater., 104 (2022) 105799.
  10. S. Luca and G. F. Maria: Mach. Sci. Technol., 12 (2008) 158.
  11. D. K. Shetty, I. G. Wright and P. N. Mincer: J Mater Sci., 20 (1985) 1873.
  12. D. Gaskell, Introduction to the thermodynamics of materials, 3rd edTylor & Francis, New York (2003) 227.
  13. V.A Tracey: Int. J. Refract. Met. Hard Mater., 11 (1992) 137.
  14. L. Akesson, Science of Hard Materials, Springer, New York (1983) 71.
  15. A. Formisano, F. C. Minutolo and A. Caraviello: Adv Tribol., 2016 (2016) 1.
  16. H. Kwon, J. Song, D. Lee, J. Seo and I. H. Choi: J. Asian Ceram. Soc., 12 (2024) 1.
  17. E. A. Almond and B. Roebuck: Mater. Sci. Eng. A., 105-106 (1988) 237.