• Title/Summary/Keyword: Nickel Thin Film

Search Result 113, Processing Time 0.029 seconds

Application of NiOx Anode for Bottom Emission Organic Light Emitting Diode

  • Kim, Young-Hwan;Kim, Jong-Yeon;Kim, Byoung-Yong;Han, Jeong-Min;Moon, Hyun-Chan;Park, Kwang-Bum;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.448-448
    • /
    • 2007
  • OLED has many advantages of low voltage operation, self radiation, light weight, thin thickness, wide view angle and fast response time to overcome existing liquid crystal display (LCD)'s weakness. Therefore, It draws attention as promising display and has already developed for manufactured goods. Also, OLED is regarded as a only substitute of flexible display with a thin display. However, Indium tin oxide(ITO) thin film for electrode of OLED shows a low electrical properties and is impossible to deposit at high thermal condition because electrical characteristics of ITO is getting worse. One of the ways to realize an improved flexible OLED is to use high internal efficiency electrodes, which have higher work function than those single layer of ITO films of the same thickness. The high internal efficiency electrodes film is developed with structure of nickel oxide for bottom Emission Type of OLED.

  • PDF

Microstructure and Characterization of Ni-C Films Fabricated by Dual-Source Deposition System

  • Han, Chang-Suk;Kim, Sang-Wook
    • Korean Journal of Materials Research
    • /
    • v.26 no.6
    • /
    • pp.293-297
    • /
    • 2016
  • Ni-C composite films were prepared by co-deposition using a combined technique of plasma CVD and ion beam sputtering deposition. Depending on the deposition conditions, Ni-C thin films manifested three kinds of microstructure: (1) nanocrystallites of non-equilibrium carbide of nickel, (2) amorphous Ni-C film, and (3) granular Ni-C film. The electrical resistivity was also found to vary from about $10^2{\mu}{\Omega}cm$ for the carbide films to about $10^4{\mu}{\Omega}cm$ for the amorphous Ni-C films. The Ni-C films deposited at ambient temperatures showed very low TCR values compared with that of metallic nickel film, and all the films showed ohmic characterization, even those in the amorphous state with very high resistivity. The TCR value decreased slightly with increasing of the flow rate of $CH_4$. For the films deposited at $200^{\circ}C$, TCR decreased with increasing $CH_4$ flow rate; especially, it changed sign from positive to negative at a $CH_4$ flow rate of 0.35 sccm. By increasing the $CH_4$ flow rate, the amorphous component in the film increased; thus, the portion of $Ni_3C$ grains separated from each other became larger, and the contribution to electrical conductivity due to thermally activated tunneling became dominant. This also accounts for the sign change of TCR when the filme was deposited at higher flow rate of $CH_4$. The microstructures of the Ni-C films deposited in these ways range from amorphous Ni-C alloy to granular structures with $Ni_3C$ nanocrystallites. These films are characterized by high resistivity and low TCR values; the electrical properties can be adjusted over a wide range by controlling the microstructures and compositions of the films.

Hysteresis Compensating of PZT Actuator in Micro Tensile Tester Using Inverse Compensation Method

  • Lee, Hye-Jin;Kim, Seung-Soo;Lee, Nak-Kyu;Lee, Hyoung-Wook;Hwang, Jai-Hyuk;Han, Chang-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.502-505
    • /
    • 2005
  • Researches about micro technology travel lively in these days. Such many researches are concentrated in the field of materials and a process field. But properties of micro materials should be known to give results of research developed into still more. In these various material properties, mechanical property such as tensile strength, elastic modulus, etc is the basic property. To measure mechanical properties in micro or nano scale, actuating must be very precise. PZT is a famous actuator which becomes a lot of use to measure very precise mechanical properties in micro research field. But PZT has a nonlinearity which is called as hysteresis. Not precision result is caused because of this hysteresis property in PZT actuator. Therefore feedback control method is used in many researches to prevent this hysteresis of PZT actuator. Feedback control method produce a good result in processing view, but cause a loss in a resolution view. In this paper, hysteresis is compensated by open loop control method. Hysteresis property is modeled in Mathematical function and compensated control input is constructed using inverse function of original data. Reliability of this control method can be confirmed by testing nickel thin film that is used in MEMS material broadly.

  • PDF

High Quality Nickel Atomic Layer Deposition for Nanoscale Contact Applications

  • Kim, Woo-Hee;Lee, Han-Bo-Ram;Heo, Kwang;Hong, Seung-Hun;Kim, Hyung-Jun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.22.2-22.2
    • /
    • 2009
  • Currently, metal silicides become increasingly more essential part as a contact material in complimentary metal-oxide-semiconductor (CMOS). Among various silicides, NiSi has several advantages such as low resistivity against narrow line width and low Si consumption. Generally, metal silicides are formed through physical vapor deposition (PVD) of metal film, followed by annealing. Nanoscale devices require formation of contact in the inside of deep contact holes, especially for memory device. However, PVD may suffer from poor conformality in deep contact holes. Therefore, Atomic layer deposition (ALD) can be a promising method since it can produce thin films with excellent conformality and atomic scale thickness controllability through the self-saturated surface reaction. In this study, Ni thin films were deposited by thermal ALD using bis(dimethylamino-2-methyl-2-butoxo)nickel [Ni(dmamb)2] as a precursor and NH3 gas as a reactant. The Ni ALD produced pure metallic Ni films with low resistivity of 25 $\mu{\Omega}cm$. In addition, it showed the excellent conformality in nanoscale contact holes as well as on Si nanowires. Meanwhile, the Ni ALD was applied to area-selective ALD using octadecyltrichlorosilane (OTS) self-assembled monolayer as a blocking layer. Due to the differences of the nucleation on OTS modified surfaces toward ALD reaction, ALD Ni films were selectively deposited on un-coated OTS region, producing 3 ${\mu}m$-width Ni line patterns without expensive patterning process.

  • PDF

Effect of Ni Interlayer on the Methanol Gas Sensitivity of ITO Thin Films

  • Lee, Y.J.;Huh, S.B.;Lee, H.M.;Shin, C.H.;Jeong, C.W.;Chae, J.H.;Kim, Y.S.;Kim, Daeil
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.5
    • /
    • pp.245-248
    • /
    • 2010
  • Sn doped $In_2O_3$ (ITO) and ITO/Ni/ITO (INI) multilayer films were deposited on the glass substrates with a reactive magnetron sputtering system without intentional substrate heating and then the influence of the Ni interlayer on the methanol gas sensitivity of ITO and INI film sensors were investigated. Although both ITO and INI film sensors have the same thickness of 100 nm, INI sensors have a sandwich structure of ITO 50 nm/Ni 5 nm/ITO 45 nm. The changes in the gas sensitivity of the film sensors caused by methanol gas ranging from 100 to 1000 ppm were measured. It is observed that the INI film sensors show the higher sensitivity than that of the ITO single layer sensors. Finally, it can be concluded that the INI film sensor have the potential to be used as improved methanol gas sensors.

P-type Electrical Characteristics of the Amorphous La2NiO4+δ Thin Films

  • Hop, Dang-Hoang;Lee, Jung-A;Heo, Young-Woo;Kim, Jeong-Joo;Lee, Joon-Hyung
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.4
    • /
    • pp.231-236
    • /
    • 2018
  • We report p-type electrical characteristics of the amorphous $La_2NiO_{4+{\delta}}$ thin films which were sputtered on the glass substrates using an RF sputtering system. As-deposited thin films at room temperature and $300^{\circ}C$ were amorphous in nature. Post-annealing of the thin film samples over $400^{\circ}C$ resulted in the nano-crystallization of the $La_2NiO_{4+{\delta}}$. The electrical properties of the films were much dependent on the oxygen partial pressure, temperature of the post-annealing and sputtering ambient. The as-deposited samples at room temperature show a hole concentration of $7.82{\times}10^{13}cm^{-3}$, and it could be increased as high as $3.51{\times}10^{22}cm^{-3}$ when the films were post-annealed in an oxygen atmosphere at $500^{\circ}C$. Such p-type conductivity behavior of the $La_2NiO_{4+{\delta}}$ films suggests that the amorphous and nano-crystallized $La_2NiO_{4+{\delta}}$ films have potential for the application as p-type semiconductive or conductive materials at low temperatures where material diffusion is limited.

Property of Nickel Silicides with Hydrogenated Amorphous Silicon Thickness Prepared by Low Temperature Process (나노급 수소화된 비정질 실리콘층 두께에 따른 저온형성 니켈실리사이드의 물성 연구)

  • Kim, Jongryul;Choi, Youngyoun;Park, Jongsung;Song, Ohsung
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.11
    • /
    • pp.762-769
    • /
    • 2008
  • Hydrogenated amorphous silicon(a-Si : H) layers, 120 nm and 50 nm in thickness, were deposited on 200 $nm-SiO_2$/single-Si substrates by inductively coupled plasma chemical vapor deposition(ICP-CVD). Subsequently, 30 nm-Ni layers were deposited by E-beam evaporation. Finally, 30 nm-Ni/120 nm a-Si : H/200 $nm-SiO_2$/single-Si and 30 nm-Ni/50 nm a-Si:H/200 $nm-SiO_2$/single-Si were prepared. The prepared samples were annealed by rapid thermal annealing(RTA) from $200^{\circ}C$ to $500^{\circ}C$ in $50^{\circ}C$ increments for 30 minute. A four-point tester, high resolution X-ray diffraction(HRXRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and scanning probe microscopy(SPM) were used to examine the sheet resistance, phase transformation, in-plane microstructure, cross-sectional microstructure, and surface roughness, respectively. The nickel silicide on the 120 nm a-Si:H substrate showed high sheet resistance($470{\Omega}/{\Box}$) at T(temperature) < $450^{\circ}C$ and low sheet resistance ($70{\Omega}/{\Box}$) at T > $450^{\circ}C$. The high and low resistive regions contained ${\zeta}-Ni_2Si$ and NiSi, respectively. In case of microstructure showed mixed phase of nickel silicide and a-Si:H on the residual a-Si:H layer at T < $450^{\circ}C$ but no mixed phase and a residual a-Si:H layer at T > $450^{\circ}C$. The surface roughness matched the phase transformation according to the silicidation temperature. The nickel silicide on the 50 nm a-Si:H substrate had high sheet resistance(${\sim}1k{\Omega}/{\Box}$) at T < $400^{\circ}C$ and low sheet resistance ($100{\Omega}/{\Box}$) at T > $400^{\circ}C$. This was attributed to the formation of ${\delta}-Ni_2Si$ at T > $400^{\circ}C$ regardless of the siliciation temperature. An examination of the microstructure showed a region of nickel silicide at T < $400^{\circ}C$ that consisted of a mixed phase of nickel silicide and a-Si:H without a residual a-Si:H layer. The region at T > $400^{\circ}C$ showed crystalline nickel silicide without a mixed phase. The surface roughness remained constant regardless of the silicidation temperature. Our results suggest that a 50 nm a-Si:H nickel silicide layer is advantageous of the active layer of a thin film transistor(TFT) when applying a nano-thick layer with a constant sheet resistance, surface roughness, and ${\delta}-Ni_2Si$ temperatures > $400^{\circ}C$.

Effect of Intermediate Metal on the Methanol Gas Sensitivity of ITO Thin Films (층간금속층에 따른 ITO 박막의 메탄올 검출민감도 개선 효과)

  • Lee, H.M.;Heo, S.B.;Kong, Y.M.;Kim, Dae-Il
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.3
    • /
    • pp.195-199
    • /
    • 2011
  • ITO thin films and gold (Au), copper (Cu) and nickel (Ni) intermediate ITO multilayer (ITO/Au/ITO, ITO/Cu/ITO, ITO/Ni/ITO) films were deposited on glass substrates with a reactive radio frequency and direct current magnetron sputtering system and then the effect of intermediate metal layer and annealing temperature on the methanol gas sensitivity of ITO films were investigated. Although both ITO and ITO/metal/ITO (IMI) film sensors have the same total thickness of 100 nm, IMI sensors have a sandwich structure of ITO 50 nm/metal 10 nm/ITO 40 nm. The change in the gas sensitivity of the film sensors caused by methanol gas ranging from 100 to 1000 ppm was measured at room temperature. The IAI film sensors showed the higher sensitivity than the other sensors. Finally, it is concluded that the ITO 50/Au 10/ITO 40 nm film sensors hasthe potential to be used as improved methanol gas sensor.

All-Solid-State Electrochromic Film with WO3/NiO Complementary Structure (WO3/NiO 상호 보완적인 구조의 전고체 전기변색 필름)

  • Shin, Minkyung;Lee, Sun Hee;Seo, Intae;Kang, Hyung-Won;Han, Seung Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.3
    • /
    • pp.275-280
    • /
    • 2022
  • An all-solid-state electrochromic film was fabricated by laminating tungsten oxide (WO3) and nickel oxide (NiO) thin films deposited by a reactive DC magnetron sputtering on flexible ITO films. The influence of oxygen partial pressure on the crystal structure, microstructure, optical properties, and electrochromic properties of WO3 and NiO thin films were investigated. WO3 and NiO films showed the best electrochromic properties under the flow of Ar:O2=80:20 and Ar:O2=90:10, respectively. The EC film fabricated with an optimized WO3 and NiO films showed a high coloration efficiency, a fast response time, and a stable optical modulation. It is expected that flexible EC window films will pave the way for the next-generation energy-saving windows.

A Study on the Surface Pre-treatment of Palladium Alloy Hydrogen Membrane (팔라듐 합금 수소 분리막의 전처리에 관한 연구)

  • Park, Dong-Gun;Kim, Hyung-Ju;Kim, Hyo Jin;Kim, Dong-Won
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.6
    • /
    • pp.248-256
    • /
    • 2012
  • A Pd-based hydrogen membranes for hydrogen purification and separation need high hydrogen perm-selectivity. The surface roughness of the support is important to coat the pinholes free and thin-film membrane over it. Also, The pinholes drastically decreased the hydrogen perm-selectivity of the Pd-based composite membrane. In order to remove the pinholes, we introduced various surface pre-treatment such as alumina powder packing, nickel electro-plating and micro-polishing pre-treatment. Especially, the micro-polishing pretreatment was very effective in roughness leveling off the surface of the porous nickel support, and it almost completely plugged the pores. Fine Ni particles filled surface pinholes with could form open structure at the interface of Pd alloy coating and Ni support by their diffusion to the membrane and resintering. In this study, a $4{\mu}m$ surface pore-free Pd-Cu-Ni ternary alloy membrane on a porous nickel substrate was successfully prepared by micro-polishing, high temperature sputtering and Cu-reflow process. And $H_2$ permeation and $N_2$ leak tests showed that the Pd-Cu-Ni ternary alloy hydrogen membrane achieved both high permeability of $13.2ml{\cdot}cm^{-2}{\cdot}min^{-1}{\cdot}atm^{-1}$ permation flux and infinite selectivity.