• Title/Summary/Keyword: Nickel(Ⅱ) and copper(Ⅱ)complexes

Search Result 40, Processing Time 0.019 seconds

Copper(II), Nickel(II) and Palladium(II) Complexes of 2-Oximino-3-thiosemicarbazone-2,3-butanedione

  • Al-Kubaisi, Abdulla H.
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.1
    • /
    • pp.37-41
    • /
    • 2004
  • A new tridentate ligand incorporating a monoxime and thiosemi-carbozone moieties has been synthesized. Its copper(II), nickel(II) and palladium(II) complexes have been prepared and characteirzed by physical and spectral methods. Elemental analyses and spectroscopic data of the metal complexes are consistent with the formation of a mononuclear copper(II) complex and binuclear complex with both nickel(II) and palladium(II). In the copper(II) complex the fourth coordination site is occupied by nitrate ion. In the binculear complexes the fourth coordination site is occupied by the deprotonated oxime oxygen of the ligand coordinated to the other metal.

Template Synthesis of Polyaza Macrocyclic Copper(II) and Nickel(II) Complexes: Spectral Characterization and Antimicrobial Studies

  • Gurumoorthy, P.;Ravichandran, J.;Karthikeyan, N.;Palani, P.;Rahiman, A. Kalilur
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2279-2286
    • /
    • 2012
  • The template synthesis of copper(II) and nickel(II) complexes derived from 2,6-diformyl-4-methylphenol with diethylenetriamine or 1,2-bis(3-aminopropylamino)ethane produce the 12-membered $N_3O$ and 17-membered $N_4O$ macrocyclic complexes, respectively. The geometry of the complexes has been determined with the help of electronic and EPR spectroscopic values and found to be five coordinated square pyramidal and, six coordinated distorted tetragonal for 12-membered and 17-membered macrocyclic complexes, respectively. Electrochemical studies of the mononuclear $N_3O$ and $N_4O$ copper(II) complexes show one irreversible oneelectron reduction wave at $E_{pc}=-1.35$ and -1.15 V respectively, and the corresponding nickel(II) complexes show irreversible one-electron reduction wave at $E_{pc}=-1.25$ and -1.22 V, respectively. The nickel(II) complexes show irreversible one-electron oxidation wave at $E_{pa}=+0.84$ and +0.82 V, respectively. All the complexes were evaluated for in vitro antimicrobial activity against the human pathogenic bacteria and fungi.

Preparation and Properties of New Di-N-alkylated 14-Membered Tetraaza Macrocycles and Their Nickel(II) and Copper(II) Complexes

  • Gang, Sin Geol;Song, Jeong Hun;Hwang, Dong Mak;Kim, Gi Mun
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.11
    • /
    • pp.1106-1110
    • /
    • 2000
  • New 14-membered tetraaza macrocycles 1,8-diallyl-3,5,7,7,10,12,14,14-octamethyl-1,4,8,11-tetraazacyclotetradecane $(L^2)$ and 1,8-bis(n-propyl)-3,5,7,7,10,12,14,14-octamethyl-1,4,8,11-tetraazacyclotetradecane $(L^3)$ have been prepared by direct react ion of 2,5,5,7,9,12,12,14-octamethyl-1,4,8,11-tetraazacyclotetradecane $(L^1)with$ allyl bromide or n-propyl bromide. The nickel(II) and copper(II) complexes of $L^2andL^3have$ been prepared. The macrocycles show high copper(II) selectivity against nickel(II) ion in methanol solutions containing water. The wavelengths (ca. 505 nm) of the d-d bands for the nickel(II) complexes are extraordinarily longer than those for the complexes of $L^1and$ other related di-N-alkylated 14-membered tetraaza macrocycles. Crystal structure of $[NiL^2](ClO4)_2$ shows that the average Ni-N bond distance $(1.992\AA)$ of the complex is distinctly longer than those of other related nickel(II) complexes. Effects of the N- and C-substituents on the properties of the macrocyclic compounds are discussed.

Effects of N-and C-Substituents on Protonation of 14-Membered Tetraaza Macrocycles and Formation of their Copper(II) and Nickel(II) Complexes

  • Shin-Geol Kang;Mi-Seon Kim;Jang-Sik Choi;Moon Hwan Cho
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.5
    • /
    • pp.594-598
    • /
    • 1993
  • The protonation constants of the 14-membered tetraaza macrocycles A(3,14-dimethyl-2,6,13,17-tetraazatricyclo$[l6.4.0^{1,18}.0^{7,12}]$docosane) and B(2,3,6,13,14,17-hexamethyl-2,6,13,17-tetraazatric yclo-[l6.4.$0^{1,18}.0^{7,12}$]docosane) were measured by potentiometry. The formation constants of each of these ligands with copper(II) and nickel(II) were determined by an out-of-cell spectrophotometric method. The results indicate that the per-N-methylated macrocycle B exhibits much higher selectivity for complex formation with copper(II) over nickel(II) ion than A and other related 14-membered tetraaza macrocycles. The effects of the N-and C-substituents on the basicity and the metal ion selectivity of the ligands are discussed. The synthesis and properties of copper(II) and nickel(II) complexes of B are also described.

Synthesis and Characterization of Cobalt(II)/(III), Nickel(II) and Copper(II) Complexes of New 14, 15 and 16-Membered Macrocyclic Ligands

  • El-Tabl, Abdou Saad
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.12
    • /
    • pp.1757-1763
    • /
    • 2004
  • A new series of nickel(II), cobalt(II)/(III) and copper(II) complexes of 14, 15 and 16-membered of macrocyclic ligands have been prepared and characterized by elemental analyses, IR, UV-VIS and $^1H-NMR$ spectra, magnetic susceptibilities, conductivities, DTA and ESR measurements. Molar conductances in DMF solution indicate that, the complexes are nonelectrolytes except (9-12) complexes. The electronic spectra show that, all complexes are square planar or distorted octahedral geometry. The ESR spectra of solid complexes (4), (8) and (11) show square planar of axial type symmetry $(d_{x2-y2})$ with considerable covalent bond character. However, complex (12) shows a spectrum of octahedral geometry with $d_{z2}$ ground state. Complex (12) shows exploitation in reducing the amount of electron adducts formed in DNA during irradiation with low radiation products.

Synthesis and Properties of Tetraaza Macrocycles Containing Two 3-Pyridylmethyl, 4-Pyridylmethyl, or Phenylmethyl Pendant Arms and Their Nickel(Ⅱ) and Copper(Ⅱ) Complexes: Effects of the Pendant Arms on the Complex Formation Reaction

  • Kang, Shin-Geol;Kim, Seong-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.3
    • /
    • pp.269-273
    • /
    • 2003
  • The synthesis and properties of 2,13-bis(3'-pyridylmethyl) $(L^3)$, 2,13-bis(4'-pyridylmethyl) $(L^4)$, and 2,13-bis(phenylmethyl) $(L^5)$ derivatives of 5,16-dimethyl-2,6,13,17-tetraazatrcyclo$[16.4.0.^{1.18}0^{7.12}]$docosane are reported. The 3- or 4-pyridylmethyl groups of $[ML^3](ClO_4)_2\;or\;[ML^4](ClO_4)_2$ (M = Ni(Ⅱ) or Cu(Ⅱ)) are not involved in coordination, and the coordination geometry (square-planar) and ligand field strength of the complexes are quite similar to those of $[ML^5](ClO_4)_2$, bearing two phenylmethyl pendant arms. However, the complex formation reactions of $L^3\;and\;L^4$ are strongly influenced by the pyridyl groups, which can interact with a proton or metal ion outside the macrocyclic ring. The macrocycle $L^5$ exhibits a high copper(Ⅱ) ion selectivity against nickel(Ⅱ) ion; the ligand readily reacts with copper(Ⅱ) ion to form $[CuL^5]^{2+}$ but does not react with hydrated nickel(Ⅱ) ion in methanol solutions. On the other hand, $L^3\;and\;L^4$ form their copper(Ⅱ) and nickel(Ⅱ) complexes under a similar condition, without showing any considerable metal ion selectivity. The ligands $L^3\;and\;L^4$ react with copper(Ⅱ) ion more rapidly than does $L^5$ at pH 6.4. At pH 5.0, however, the reaction rate of the former macrocycles is slower than that of the latter. The effects of the 3- or 4-pyridylmethyl pendant arms on the complex formation reaction of $L^3\;and\;L^4$ are discussed.

Electrochemical Properties of Binuclear Tetradentate Schiff Base Cobalt(II), Nickel(II) and Copper(II) Complexes in Nonaqueous Solvents. (V) (비수용매에서 이핵성 네자리 Schiff Base Cobalt(II), Nickel(II) 및 Copper(II) 착물들의 전기화학적 성질 (제 5 보))

  • Chjo Ki-Hyung;Choi Yong-Kook;Lee Song-Ju;Kim Chan-Young;Rim Chae-Pyeong
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.5
    • /
    • pp.709-719
    • /
    • 1992
  • We synthesized the binuclear tetradentate Schiff base cobalt(II), nickel(II) and copper(II) complexes such as [Co(II)_2(TSBP)(L)_4], [Ni(II)_2(TSBP)(II)_4] and [Cu(II)_2(TSBP)] (TSBP: 3,3',4,4'-tetra(salicylideneimino)-1,1'-biphenyl, L: Py, DMSO and DMF). We identified the binucleated structure of these complexes by elemental analysis, IR-spectrum, UV-visible spectrum, T.G.A. and D.S.C. According to the results for cyclic voltammogram and differential pulse polarogram of 1 mM complexes in nonaqueous solvents included 0.1M TEAP-L (L; Py, DMSO and DMF) as supporting electrolyte, it was found that diffusionally controlled redox processes of four steps through with one electron for binucleated Schiff base Cobalt(II) complex was Co(III)_2 {^\longrightarrow \\_\longleftarrow^e^-}Co(III)Co(II)_2{^\longrightarrow \\_\longleftarrow^e^-}Co(II){^\longrightarrow \\_\longleftarrow^e^-}Co(I){^\longrightarrow \\_\longleftarrow^e^-}Co(I)_2 and two steps with one electron for Nickel(II) and Copper(II) complexes were M(II)_2 {^\longrightarrow \\_\longleftarrow^e^-}M(I)M(I){^\longrightarrow \\_\longleftarrow^e^-}M(I)_2 (M; Ni and Cu) in nonaqueous solvents.

  • PDF

Synthesis and Characterization of New Tetraaza Macrocycles Bearing Two or Four N-Methoxyethyl Pendant Arms and Their Copper(II) and/or Nickel(II) Complexes

  • Kang, Shin-Geol;Kim, Hyun-Ja;Kwak, Chee-Hun
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.9
    • /
    • pp.2701-2704
    • /
    • 2010
  • This work shows that both L2 and L3 bearing two and four N-$(CH_2)_2OCH_3$ groups, respectively, can be prepared selectively by the reaction of $L^1$ with 1-bromo-2-methoxyethane. The di-N-substituted macrocycle $L^2$ readily forms its copper(II) and nickel(II) complexes. The N-$(CH_2)_2OCH_3$ groups in $[CuL^2]^{2+}$ are coordinated to the metal ion, whereas those in $[NiL^2]^{2+}$ are not involved in coordination. Interestingly, $L^3$ reacts with $Cu^{2+}$ ion to form $[Cu(HL^3)]^{3+}$, in which one tertiary amino group is not involved in coordination.

Preparation and Characterization of Nickel(Ⅱ) and Copper(Ⅱ) Tetaaza Macrocyclic Complexes with Isonicotinate Ligands

  • Choi, Ki-Young;Kim, Moon-Jip;Kim, Dae-Sue;Kim, Yong-Son;Kim, Jae-Hyun;Ryu, Hai-Il;Lim, Youn-Mook;Kang, Seung-Gu;Shin, Ueon-Sang;Lee, Kyu-Chul;Hong, Choon-Pyo
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.8
    • /
    • pp.1062-1066
    • /
    • 2002
  • The complexes [Ni(L)(INT)2]${\cdot}$5H2O (1) and [Cu(L)(H2O)](Cl)(INT)${\cdot}$3H2O (2) (L = 3,14-dimethyl-2,6,13,17-tetraazatricyclo[14,4,01.18 ,07.12 ]docosane, INT = isonicotinate) have been prepared and characterized by X-ray crystallography, electronic absorption, and cyclic voltammetry. The crystal structure of 1 reveals an axially elongated octahedral geometry with two axial isonicotinate ligands. The electronic spectra, magnetic moment, and redox potentials of 1 also show a high-spin octahedral geometry. However, 2 shows that the coordination environment around the copper atom is a distorted square-pyramid with an axial water molecule. The spectra and electrochemical behaviors of 2 are also discussed.

Template Synthesis and Properties of Square Planar Nickel(II) and Copper(II) Complexes of 14-Membered Hexaaza Macrocyclic Ligands with Various Alkyl Pendant Arms at the Uncoordinated Nitrogens

  • Jung, Soo-Kyung;Kang, Shin-Geol;Suh, Myung-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.4
    • /
    • pp.362-366
    • /
    • 1989
  • Square planar nickel(II) and copper(II) complexes of 14-membered macrocyclic ligands containing various alkyl pendant arms at the uncoordinated nitrogen atoms, 1,8-dipropyl, 1,8-dibutyl, 1,8-bis(2-methylpropyl), 1,8-bis(2-ethylhexyl), and 1,8-dibenzyl-1,3,6,8,10,13-hexaazacyclotetradecane have been prepared from the template condensation of ethylenediamine, formaldehyde, and appropriate primary amines in the presence of the metal ion. The spectroscopic and electrochemical properties of these complexes are similar to those of tetraaza macrocyclic complexes and are not affected significantly by the nature of the alkyl groups.