DOI QR코드

DOI QR Code

Synthesis and Properties of Tetraaza Macrocycles Containing Two 3-Pyridylmethyl, 4-Pyridylmethyl, or Phenylmethyl Pendant Arms and Their Nickel(Ⅱ) and Copper(Ⅱ) Complexes: Effects of the Pendant Arms on the Complex Formation Reaction

  • Published : 2003.03.20

Abstract

The synthesis and properties of 2,13-bis(3'-pyridylmethyl) $(L^3)$, 2,13-bis(4'-pyridylmethyl) $(L^4)$, and 2,13-bis(phenylmethyl) $(L^5)$ derivatives of 5,16-dimethyl-2,6,13,17-tetraazatrcyclo$[16.4.0.^{1.18}0^{7.12}]$docosane are reported. The 3- or 4-pyridylmethyl groups of $[ML^3](ClO_4)_2\;or\;[ML^4](ClO_4)_2$ (M = Ni(Ⅱ) or Cu(Ⅱ)) are not involved in coordination, and the coordination geometry (square-planar) and ligand field strength of the complexes are quite similar to those of $[ML^5](ClO_4)_2$, bearing two phenylmethyl pendant arms. However, the complex formation reactions of $L^3\;and\;L^4$ are strongly influenced by the pyridyl groups, which can interact with a proton or metal ion outside the macrocyclic ring. The macrocycle $L^5$ exhibits a high copper(Ⅱ) ion selectivity against nickel(Ⅱ) ion; the ligand readily reacts with copper(Ⅱ) ion to form $[CuL^5]^{2+}$ but does not react with hydrated nickel(Ⅱ) ion in methanol solutions. On the other hand, $L^3\;and\;L^4$ form their copper(Ⅱ) and nickel(Ⅱ) complexes under a similar condition, without showing any considerable metal ion selectivity. The ligands $L^3\;and\;L^4$ react with copper(Ⅱ) ion more rapidly than does $L^5$ at pH 6.4. At pH 5.0, however, the reaction rate of the former macrocycles is slower than that of the latter. The effects of the 3- or 4-pyridylmethyl pendant arms on the complex formation reaction of $L^3\;and\;L^4$ are discussed.

Keywords

References

  1. Lukes, I.; Kotek, J.; Vojtisek, P.; Hermann, P. Coord. Chem. Rev. 2001, 216, 287 https://doi.org/10.1016/S0010-8545(01)00336-8
  2. Lee, S. C.; Izatt, R. M.; Zhang, X. X.; Nelson, E. G.; Lamb, J. D.; Savage, P. B.; Bradshaw, J. S. Inorg. Chim. Acta 2001, 317, 174 https://doi.org/10.1016/S0164-1212(00)00110-2
  3. Hay, R. W.; Hassan, M. M. Polyhedron 1997, 16, 2205. https://doi.org/10.1016/S0277-5387(96)00547-5
  4. Turonek, M. L.; Duckworth, P. A.; Davies, P. J.; Taylor, M. R.; Wainwright, K. P.; Harriott, P.; Duckworth, P. A. Inorg. Chim. Acta 1996, 246, 1. https://doi.org/10.1016/0020-1693(96)05043-8
  5. Kimura, E.; Wada, S.; Shionoya, M.; Okazaki, Y. Inorg. Chem. 1994, 33, 770. https://doi.org/10.1021/ic00082a025
  6. Costamagna, J.; Ferraudi, G.; Matsuhiro, B.; Campos-Vallette, M.; Canales, J.; Villagran, M.; Vargas, J.; Aruirre, M. J. Coord. Chem. Rev. 2000, 196, 125. https://doi.org/10.1016/S0010-8545(99)00165-4
  7. Reichert, D. E.; Lewis, J. S.; Anderson, C. J. Coord. Chem. Rev. 1999, 184, 3. https://doi.org/10.1016/S0010-8545(98)00207-0
  8. Comblin, V.; Gilsoul, D.; Hermann, M.; Humblet, V.; Jacques, V.; Mesbahi, M.; Sauvage, C.; Desreux, J. F. Coord. Chem. Rev. 1999, 185, 451. https://doi.org/10.1016/S0010-8545(99)00028-4
  9. Kang, S.-G.; Kim, M.-S.; Kim, S.-J.; Ryu, K. Polyhedron 1996, 15, 1835. https://doi.org/10.1016/0277-5387(95)00431-9
  10. Rahardjo, S. B.; Wainwright, K. P. Inorg. Chim. Acta 1997, 255, 29. https://doi.org/10.1016/S0020-1693(96)05200-0
  11. Bu, X.-H.; Chen, W.; Zhang, Z.-H.; Zhang, R.-H.; Kuang, S.-M.; Clifford, T. Inorg. Chim. Acta 2000, 310, 110. https://doi.org/10.1016/S0020-1693(00)00245-0
  12. Bu, X.-H.; Chen, W.; Mu, L.-J.; Zhang, Z.-H.; Zhang, R.-H.; Clifford, T. Polyhedron 2000, 19, 2095. https://doi.org/10.1016/S0277-5387(00)00510-6
  13. Bu, X.-H.; Cao, X.-C.; Chen, W.; Zhang, R.-H.; Thomas, C. Polyhedron 1998, 17, 289. https://doi.org/10.1016/S0277-5387(97)00305-7
  14. Malachowski, M. R.; Dorsey, B. T.; Parker, M. J.; Adams, M. E.; Kelly, R. S. Polyhedron 1998, 17, 1289. https://doi.org/10.1016/S0277-5387(97)00380-X
  15. Voronkova, V. K.; Gvuckoviv, G.; Jezirerska, J.; Mrozinski, J.; Yablokov, Y. V. Inorg. Chim. Acta 1997, 262, 147. https://doi.org/10.1016/S0020-1693(97)05515-1
  16. Alcock, N. W.; Balakrishnan, K. P.; Moore, P. J. Chem. Soc., Dalton Trans. 1986, 1743.
  17. Asato, E.; Hashimoto, S.; Matsumoto, N.; Kida, S. J. Chem. Soc., Dalton Trans. 1990, 1741.
  18. Vuckovic, G.; Asto, E.; Matsumoto, N.; Kida, S. Inorg. Chim. Acta 1990, 171, 45. https://doi.org/10.1016/S0020-1693(00)84662-9
  19. Kurosaki, H.; Yoshida, H.; Fujimoto, A.; Goto, M.; Shionoya, M.; Kimura, E.; Espinosa, E.; Barbe, J.-M.; Guilard, R. J. Chem. Soc., Dalton Trans. 2001, 898.
  20. Choi, K.-Y.; Lee, H.-O.; Kim, Y.-S.; Chun, K.-M.; Lee, K. C.; Choi, S.-N.; Hong, C.-P.; Kim, Y.- Y. Inorg. Chem. Commun. 2002, 5, 496. https://doi.org/10.1016/S1387-7003(02)00450-1
  21. Alcock, N. W.; Clarke, A. J.; Errington, W.; Josceanu, A. M.; Moore, P.; Rawle, S. C.; Sheldon, P.; Smith, S. M.; Turonek, M. L. Supramol. Chem. 1996, 6, 281. https://doi.org/10.1080/10610279608032546
  22. Grant, S. J.; Moore, P.; Omar, H. A. A.; Alcock, N. W. J. Chem. Soc., Dalton Trans. 1994, 485.
  23. Balakrishnan, K. P.; Omar, H. A. A.; Moore, P.; Alcock, N. W.;Pike, G. A. J. Chem. Soc., Dalton Trans. 1990, 2965.
  24. Tamburini, S.; Vigato, P. A.; Casellato, U.; Graziani, R. J. Chem. Soc., Dalton Trans. 1989, 1993.
  25. Fabbrizzi, L.; Pallavicini, P.; Parodi, L.; Perotti, A.; Taglietti, A. J. Chem. Soc., Chem. Commun. 1995, 2439.
  26. Comba, P.; Luther, S. M.; Maas, O.; Pritzkow, H.; Vielfort, A. Inorg. Chem. 2001, 40, 2335. https://doi.org/10.1021/ic000696x
  27. Kurosaki, H.; Bucher, C.; Espinosa, E.; Barbe, J.-M.; Guilard, R. Inorg. Chim. Acta 2001, 322, 145. https://doi.org/10.1016/S0020-1693(01)00549-7
  28. Kimura, E.; Kotake, Y.; Koike, T.; Shionoya, M.; Shiro, M. Inorg. Chem. 1990, 29, 4991. https://doi.org/10.1021/ic00349a031
  29. Kang, S.-G.; Kim, S.-J.; Jeong, J. H. Polyhedron 1998, 17, 3227. https://doi.org/10.1016/S0277-5387(98)00097-7
  30. Choi, K.-Y.; Chun, K.-M.; Suh, I.-W. Polyhedron 1999, 18, 2811. https://doi.org/10.1016/S0277-5387(99)00192-8
  31. Batsanov, A. S.; Goeta, A. E.; Howard, J. A. K.; Maffeo, D.; Puschmann, H.; Williams, J. A. G. Polyhedron 2001, 20, 981. https://doi.org/10.1016/S0277-5387(01)00737-9
  32. Goeta, A. E.; Howard, J. A. K.; Maffeo, D.; Puschmann, H.; Williams, J. A. G.; Yufit, D. S. J. Chem. Soc., Dalton Trans. 2000, 1873.
  33. Hay, R. W.; Pujari, M. P.; Moodie, W. T.; Craig, S.; Richens, D. T.; Perotti, A.; Ungaretti, L. J. Chem. Soc., Dalton Trans. 1987, 2605.
  34. Madeyski, C. M.; Michael, J. P.; Hancock, R. D. Inorg. Chem. 1984, 23, 1487. https://doi.org/10.1021/ic00178a037
  35. "Dey, B.; Coates, J. H.; Duckworth, P. A.; Lincoln, S. P.; Wainwright, K. P. Inorg. Chim. Acta 1993, 214, 77." https://doi.org/10.1016/S0020-1693(00)87528-3
  36. Boeyens, J. C. A.; Cook, L.; Duckworth, P. A.; Rahardjo, S. B.; Taylor, M. R.; Wainwright, K. P. Inorg. Chim. Acta 1996, 246, 321. https://doi.org/10.1016/0020-1693(96)05079-7
  37. Josceanu, A. M.; Moore, P.; Rawle, S. C.; Sheldon, P.; Smith, S. M. Inorg. Chim. Acta 1995, 240, 159 https://doi.org/10.1016/0020-1693(95)04531-7
  38. I.; Ueda, I.; Marubayash, N.; Kida, S.; Matsumoto, N.; Kudo, M.; Toyohara, M.; Hiate, K. J. Chem. Soc., Dalton Trans. 1990, 2763.
  39. Bu, X. H.; Zhang, Z. H.; An, D. L.; Chen, Y. T.; Shionoya, M.; Kimura, E. Inorg. Chim. Acta 1996, 249, 125. https://doi.org/10.1016/0020-1693(96)05020-7
  40. Kang, S.-G.; Kim, M.-S.; Choi, J.-S.; Whang, D.; Kim, K. J. Chem. Soc., Dalton Trans. 1995, 363.
  41. Kang, S.-G.; Kweon, J. K.; Jung, S.-K. Bull. Korean Chem. Soc. 1991, 12, 483.
  42. Kang, S.-G.; Kim, M.-S.; Whang, D.; Kim, K. Inorg. Chim. Acta 1998, 279, 238. https://doi.org/10.1016/S0020-1693(98)00123-6
  43. Kang, S.-G.; Ryu, K. Bull. Korean Chem. Soc. 2000, 21, 535.
  44. Kang, S.-G.; Song, J.; Whang, D.; Kim, K. Bull. Korean Chem. Soc. 2000, 21, 1106.
  45. Bakak, A.; Espension, J. H. Inorg. Chem. 1993, 31, 1108. https://doi.org/10.1021/ic00032a038
  46. Basolo, F.; Pearson, R. G. Mechanisms of Inorganic Reactions, 2nd ed; John Wiley: New York, 1968; p 32.
  47. Huheey, J. E.; Keiter, E. A.; Keiter, R. L. Inorganic Chemistry: Principles of Structure and Reactivity, 4th ed; HaperCollins: New York, 1993; pp 328-344.

Cited by

  1. Synthesis, spectroscopic, thermal, and antimicrobial studies of tetradentate 12 and 14 member Schiff bases and their complexes with Fe(III), Co(II), and Cu(II) vol.63, pp.22, 2010, https://doi.org/10.1080/00958972.2010.526707
  2. Zinc(ii) complexes of constrained antiviral macrocycles vol.41, pp.21, 2012, https://doi.org/10.1039/c2dt30140g
  3. antiproliferative and antibacterial studies of tetraazamacrocyclic complexes of Co(II) and Cu(II) with pyromellitic acid vol.71, pp.10, 2018, https://doi.org/10.1080/00958972.2018.1459581
  4. Synthesis, Crystal Structure and Spectroscopic Properties of [2,13-Bis(1-naphthalenylmethyl)-5,16-dimethyl-2,6,13,17-tetraazatricyclo(14,4,01.18,07.12)docosane]copper(II) Diperchlorate Acetonitrile Disolvate vol.636, pp.8, 2010, https://doi.org/10.1002/zaac.200900551
  5. Synthesis and Properties of Tetraaza Macrocycles Containing Two 3-Pyridylmethyl, 4-Pyridylmethyl, or Phenylmethyl Pendant Arms and Their Nickel(II) and Copper(II) Complexes: Effects of the Pendant Arm vol.34, pp.31, 2003, https://doi.org/10.1002/chin.200331188
  6. Preparation, characterization and X-ray analysis of [Co2(Cl)2tpmc](BF4)2. Comparative structural analysis with the complexes having analogous geometries and vol.827, pp.1, 2003, https://doi.org/10.1016/j.molstruc.2006.05.009
  7. X-ray analyses, spectroscopic and magnetic properties of [Cu4(succinato)(tpmc)2](ClO4)6.2C2H5OH.4H2O and [Cu2(C vol.872, pp.2, 2003, https://doi.org/10.1016/j.molstruc.2007.02.028
  8. Binuclear biologically active Co(II) complexes with octazamacrocycle and aliphatic dicarboxylates vol.1029, pp.None, 2003, https://doi.org/10.1016/j.molstruc.2012.06.055
  9. Synthesis, spectroscopic studies, thermal analyses, biological activity of tridentate coordinated transition metal complexes of bi(pyridyl-2-ylmethyl)amine]ligand vol.1104, pp.None, 2016, https://doi.org/10.1016/j.molstruc.2015.09.030
  10. New mixed ligand Co(II) complexes: Synthesis, characterization and antimicrobial activity vol.59, pp.1, 2003, https://doi.org/10.5937/zasmat1801051t
  11. Thermal behavior and biological activity of [Co2(Cl)2 tpmc](BF4)2 complex vol.62, pp.4, 2003, https://doi.org/10.5937/zasmat2104291t