• Title/Summary/Keyword: NiSi/sub x/

Search Result 43, Processing Time 0.021 seconds

Structural Study of Tetragonal-Ni1-xPdxSi/Si (001) Using Density Functional Theory (DFT) (Density Functional Theory (DFT)를 이용한 Tetragonal-Ni1-xPdxSi/Si (001)의 구조 연구)

  • Kim, Dae-Hee;Seo, Hwa-Il;Kim, Yeong-Cheol
    • Korean Journal of Materials Research
    • /
    • v.18 no.9
    • /
    • pp.482-485
    • /
    • 2008
  • Tetragonal-$Ni_{1-x}Pd_x$Si/Si (001) structure was studied by using density functional theory (DFT). An epitaxial interface between $2{\times}2{\times}4$ (001) tetragonal-NiSi supercell and $1{\times}1{\times}2$ (001) Si supercell was first constructed by adjusting the lattice parameters of B2-NiSi structure to match those of the Si structure. We chose Ni atoms as a terminating layer of the B2-NiSi; the equilibrium gap between the tetragonal-NiSi and Si was calculated to be 1.1 ${\AA}$. The Ni atoms in the structure moved away from the original positions along the z-direction in a systematic way during the energy minimization. Two different Ni sites were identified at the interface and the bulk, respectively. The two Ni sites at the interface have 6 and 7 coordination numbers. The Ni sites with coordination number 6 at the interface were located farther away from the interface, and were more favorable for Pd substitution.

Structural Study of Tetragonal-Ni1-xMxSi/Si (001) (M = Co, Pd, Pt): First Principles Calculation (Tetragonal-Ni1-xMxSi/Si (001) (M = Co, Pd, Pt) 구조연구 : 제 1 원리계산)

  • Kim, Dae-Hee;Seo, Hwa-Il;Kim, Yeong-Cheol
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.12
    • /
    • pp.830-834
    • /
    • 2008
  • NiSi is currently being employed in 45 nm CMOS devices as a contact material. We employed a first principles calculation to understand the movements of atoms when Co, Pd, and Pt were added to tetragonal-NiSi on Si (001). The Ni atoms in the tetragonal-NiSi/Si (001) favored away from the original positions along positive c-direction in a systematic way during the energy minimization. Two different Ni sites were identified at the interface and the bulk, respectively. The Ni site at the interface farther away from the interface was more favorable for Pd and Pt substitution. Co, however, prafered the bulk site to the interface site, unlike Pd and Pt.

Nano Structure and Mechanical Properties of Rapidly Solidified Al81-(x+y)Si19NixCey Alloy (급속응고된 Al81-(x+y)Si19NixCey 합금의 나노조직과 기계적 특성)

  • 이태행;홍순직
    • Journal of Powder Materials
    • /
    • v.10 no.6
    • /
    • pp.406-414
    • /
    • 2003
  • In order to produce good wear resistance powder metallurgy Al-Si alloys with high strength, addition of glass forming elements of Ni and Ce in $Al_{81}$Si$_{19}$ alloy was examined using SEM, TEM, tensile strength and wear testing. The solubility of Si in aluminum increased with increasing Ni and Ce contents for rapidly solidified powders. These bulk alloys consist of a mixed structure in which fine Si particles with a particle size below 500 nm and very fine A1$_3$Ni, A1$_3$Ce compounds with a particle size below 200 nm are homogeneously dispersed in aluminum matrix with a grain size below 600 nm. The tensile strength at room temperature for $Al_{81}$Si$_{19}$, $Al_{78}$Si$_{19}$Ni$_2$Ce$_{0.5}$, and $Al_{76}$Si$_{19}$Ni$_4$Ce$_1$ bulk alloys extruded at 674 K and ratio of 10 : 1 is 281,521, and 668 ㎫ respectively. Especially, $Al_{73}$Si$_{19}$Ni$_{7}$Ce$_1$ bulk alloy had a high tensile strength of 730 ㎫. These bulk alloys are good wear-resistance bel ter than commercial I/M 390-T6. Specially, attactability for counterpart is very little, about 15 times less than that of the I/M 390-T6. The structural refinement by adding glass forming elements such as Ni and Ce to hyper eutectic $Al_{81}$Si$_{19}$ alloy is concluded to be effective as a structural modification method.d.tion method.

Steam Reforming of Hydrothermal Liquefaction Liquid from Macro Algae over Ni-K2TixOy Catalysts (Ni-K2TixOy 촉매를 이용한 해조류 유래 수열 액화 원료의 수증기 개질 반응 연구)

  • Park, Yong Beom;Lim, Hankwon;Woo, Hee-Chul
    • Clean Technology
    • /
    • v.23 no.1
    • /
    • pp.104-112
    • /
    • 2017
  • Hydrogen production via steam reforming of liquefaction liquid from marine algae over hydrothermal liquefaction was carried out at 873 ~ 1073 K with a commercial catalyst and Ni based $K_2Ti_xO_y$ added catalysts. Liquefaction liquid obtained by hydrothermal liquefaction (503 K, 2 h) was used as a reactant and comparison studies for catalytic activity over different catalysts (FCR-4-02, $Ni/K_2Ti_xO_y-Al_2O_3$, $Ni/K_2Ti_xO_y-SiO_2$, $Ni/K_2Ti_xO_y-ZrO_2/CeO_2$ and Ni/$K_2Ti_xO_y$-MgO), reaction temperature were performed. Experimental results showed Ni/$K_2Ti_xO_y$ based catalysts ($Ni/K_2Ti_xO_y-Al_2O_3$, $Ni/K_2Ti_xO_y-SiO_2$, Ni/$K_2Ti_xO_y-ZrO_2$/ $CeO_2$ and Ni/$K_2Ti_xO_y$-MgO) have a higher activity than commercial catalyst (FCR-4-02) and In particular, a product composition was different depending on support materials. An acidic support ($Al_2O_3$) and a basic support (MgO) led to a higher selectivity for CO while a neutral support ($SiO_2$) and a reducing support ($ZrO_2/CeO_2$) resulted in a higher $CO_2$ selectivity due to water gas shift reaction.

Ni/Si/Ni Ohmic contacts to n-type 4H-SiC (Ni/Si/Ni n형 4H-SiC의 오옴성 접합)

  • 이주헌;양성준;노일호;김창교;조남인;정경화;김은동;김남균
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.197-200
    • /
    • 2001
  • In this letter, we report on the investigation of Ni/Si/Ni Ohmic contacts to n-type 4H-SiC. Ohmic contacts have been formed by a vacuum annealing and N$_2$ gas ambient annealing method at 950$^{\circ}C$ for 10 min. The specific contact resistivity($\rho$$\sub$c/), sheet resistance(R$\sub$S/), contact resistance(R$\sub$S/), transfer length(LT) were calculated from resistance(R$\sub$T/) versus contact spacing(d) measurements obtained from 10 TLM(transmission line method) structures. The resulting average values of vacuum annealing sample were $\rho$$\sub$c/=3.8x10$\^$-5/ Ω$\textrm{cm}^2$ , R$\sub$c/=4.9Ω, R$\sub$T/=9.8Ω and L$\sub$T/=15.5$\mu\textrm{m}$, resulting average values of another sample were $\rho$$\sub$c/=2.29x10$\^$-4/ Ω$\textrm{cm}^2$ , R$\sub$c/=12.9Ω, R$\sub$T/=25.8Ω. The Physical properties of contacts were examined using X-Ray Diffraction and Auger analysis, there was a uniform intermixing of the Si and Ni, migration of Ni into the SiC.

  • PDF

Distribution Behavior of Ni between CaO-SiO2-Al2O3-MgO Slag and Cu-Ni Alloy (CaO-SiO2-Al2O3-MgO 슬래그와 Cu-Ni합금 사이의 Ni 분배거동)

  • Han, Bo-Ram;Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.24 no.1
    • /
    • pp.35-42
    • /
    • 2015
  • To obtain the fundamental information on the dissolution of nickel into the slag in the pyrometallurgical processes for treatment of wasted PCB, the distribution ratios of nickel between CaO-$SiO_2-Al_2O_3$-MgO slag and copper-5 wt%Ni alloy were measured at 1623 K to 1823 K under a controlled $CO_2$-CO atmosphere. The distribution ratio of Ni increased linearly with increasing oxygen partial pressure. Therefore, the dissolution reaction of nickel into the slags could be described by the following equation; $$Ni(l)_{metal}+\frac{1}{2}O_2(g)NiO(l)_{slag}$$ The distribution ratio of Ni increased linearly with increasing content of basic oxides(CaO and MgO) in slag. However, the distribution ratio of Ni decreased linearly with increasing temperature. From these results, the empirical equation of distribution ratio of Ni was obtained by the following equation from the analysis of experimental conditions by multiple regression. $${\log}L_{Ni}=0.4000{\log}P_{O2}-5.1{\times}10^{-4}T+0.3375\(\frac{X_{CaO}+X_{MgO}}{X_{SiO2}}\)$$

Effect of Added B4C on the Mechanical Properties of WC/Ni-Si Hardmetal (WC/Ni-Si 초경합금의 기계적 성질에 미치는 B4C의 영향)

  • Lee, Gil-Geun;Ha, Gook-Hyun
    • Journal of Powder Materials
    • /
    • v.20 no.5
    • /
    • pp.366-370
    • /
    • 2013
  • The effects of $B_4C$ on the mechanical properties of WC/Ni-Si hardmetal were analyzed using sintered bodies comprising WC(70-x wt.%), Ni (28.5 wt.%), Si (1.5 wt.%), and $B_4C$ (x wt.%), where $$0{\leq_-}x{\leq_-}1.2$$ wt.%. Samples were prepared by a combination of mechanical milling and liquid-phase sintering. Phase and microstructure characterizations were conducted using X-ray diffractometry, scanning electron microscopy, and electron probe X-ray micro analysis. The mechanical properties of the sintered bodies were evaluated by measuring their hardness and transverse rupture strength. The addition of $B_4C$ improved the sinterability of the hardmetals. With increasing $B_4C$ content, their hardness increased, but their transverse rupture strength decreased. The changes of sinterability and mechanical properties were attributed to the alloying reaction between $B_4C$ and the binder metal (Ni, Si).

Fabrication of WC-Ni-Si-B4C Composite and Diffusion Bonding with Stainless Steel (WC-Ni-Si-B4C계 초경합금 제조 및 스테인레스 스틸과의 확산접합)

  • Won, Jong-Wun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.6
    • /
    • pp.594-598
    • /
    • 2015
  • The effects of Ni on the mechanical properties of WC-Xwt.%Ni-1.5wt.%Si-1.1wt.%$B_4C$ composite (X = 21.6, 23.6, 25.6 and 27.6 wt.%) were investigated in order to replace Co with Ni as the binder metal for hard materials based on WC-Co system. Using X-ray diffraction, optical microscopy, field-emission scanning electron microscopy results, the microstructure, pore distribution and grain size of the composites sintered at $1,150^{\circ}C$ were examined with different fraction (X = 21.6, 23.6, 25.6 and 27.6 wt.%) of binder metal Ni. The average WC grain size of the $WC-Ni-Si-B_4C$ composites was about $1{\mu}m$. The Rockwell hardness : A (HRA) and transverse rupture strength were about 88HRA and $110kgf/mm^2$, respectively. The obtained sample was bonded with SM45C at a temperature of $1,050^{\circ}C$. The thickness and mechanical properties of the bonded area were investigated with different dwell time at a bonding temperature of $1,050^{\circ}C$.

Selective Synthesis of Acetonitrile via Direct Amination of Ethanol Over Ni/SiO2-Al2O3 Mixed Oxide Catalysts (Ni/SiO2-Al2O3 복합 산화물 촉매 상에서 에탄올의 직접 아민화 반응에 의한 선택적 아세토니트릴 합성)

  • Kim, Hanna;Shin, Chae-Ho
    • Korean Chemical Engineering Research
    • /
    • v.59 no.2
    • /
    • pp.281-295
    • /
    • 2021
  • In this study, the direct amination of ethanol was performed over impregnated Ni on SiO2-Al2O3 mixed oxide catalysts prepared by varying Si/(Si + Al) molar ratio to 30 mol%. To characterize the physico-chemical properties of the catalysts used, X-ray diffraction (XRD), N2-physisorption, temperature-programmed desorption of iso-propyl alcohol (IPA-TPD), temperature-programmed desorption of ethanol (EtOH-TPD), temperature-programmed reduction with H2 (H2-TPR), H2-chemisorption and transmission electron microscopy (TEM) were used. The acidic property was continuously increased until Si/(Si + Al) = 30 mol% in SiO2-Al2O3 mixed oxides used. The dispersion of Ni metal and surface area, acid characteristics of the supported Ni catalyst have a complex effect on the catalytic reaction activity. The low reduction temperature of nickel oxide and acidic properties were beneficial to the formation of acetonitrile. In terms of conversion of ethanol, Ni/SiO2-Al2O3 catalyst with a molar ratio of 10 mol% Si/(Si+Al) showed the highest activity and a volcanic curve based on it. The tendency of results were consistent in the metal dispersion and catalytic activity.

Microstructural Features of Multicomponent FeCoCrNiSix Alloys

  • Kong, Kyeong Ho;Kim, Kang Cheol;Kim, Won Tae;Kim, Do Hyang
    • Applied Microscopy
    • /
    • v.45 no.1
    • /
    • pp.32-36
    • /
    • 2015
  • The microstructural features of FeCoCrNi, FeCoCrNiAl and FeCoCrNiSix (x=0, 5, 10, 15, 20) alloys have been investigated in the present study. The microstructure of FeCoCrNi alloy changes dramatically with equiatomic addition of Al. The fcc irregular shaped grain structure in the as-cast FeCoCrNi alloy changes into the bcc interconnected structure with phase separation of Al-Ni rich and Cr-Fe rich phases in the as-cast FeCoCrNiAl alloy. The microstructure of FeCoCrNi alloy changes with the addition of Si. With increasing the amount of Si, the fcc structure of the grains is maintained, but new phase containing higher amount of Si forms at the grain boundary. As the amount of Si increases, the fraction the Si-rich grain boundary phase increases.