• Title/Summary/Keyword: NiO particles

Search Result 195, Processing Time 0.026 seconds

Microstructure characterization and mechanical properties of Cr-Ni/ZrO2 nanocomposites

  • Sevinc, O zlem;Diler, Ege A.
    • Advances in nano research
    • /
    • v.13 no.4
    • /
    • pp.313-323
    • /
    • 2022
  • The microstructure and mechanical properties of Cr-Ni steel and Cr-Ni steel-matrix nanocomposites reinforced with nano-ZrO2 particles were investigated in this study. Cr-Ni steel and Cr-Ni/ZrO2 nanocomposites were produced using a combination of high-energy ball milling, pressing, and sintering processes. The microstructures of the specimens were analyzed using EDX and XRD. Compression and hardness tests were performed to determine the mechanical properties of the specimens. Nano-ZrO2 particles were effective in preventing chrome carbide precipitate at the grain boundaries. While t-ZrO2 was detected in Cr-Ni/ZrO2 nanocomposites, m-ZrO2 could not be found. Few α'-martensite and deformation bands were formed in the microstructures of Cr-Ni/ZrO2 nanocomposites. Although nano-ZrO2 particles had a negligible impact on the strength improvement provided by deformation-induced plasticity mechanisms in Cr-Ni/ZrO2 nanocomposites, the mechanical properties of Cr-Ni steel were significantly improved by using nano-ZrO2 particles. The hardness and compressive strength of Cr-Ni/ZrO2 nanocomposite were higher than those of Cr-Ni steel and enhanced as the weight fraction of nano-ZrO2 particles increased. Cr-Ni/ZrO2 nanocomposite with 5wt.% nano-ZrO2 particles had almost twofold the hardness and compressive strength of Cr-Ni steel. The nano-ZrO2 particles were considerably more effective on particle-strengthening mechanisms than deformation-induced strengthening mechanisms in Cr-Ni/ZrO2 nanocomposites.

LNG Combustion Characteristics of Oxygen Carrier Particles for Chemical-Looping Combustor (매체순환식 가스연소기 산소공여입자의 LNG 연소특성)

  • Ryu, Ho-Jung;Bae, Dal-Hee;Jin, Gyoung-Tae
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.141-147
    • /
    • 2005
  • LNG combustion characteristics of oxygen carrier particles were investigated in a batch type bubbling fluidized bed reactor. Three particles, NiO/bentonite, $NiO/NiAl_2O_4$, $CO_xO_y/CoAl_2O_4$, were used as oxygen carrier particles and LNG and air were used as reactants for reduction and oxidation, respectively. In the reducer, high gas conversion and high $CO_2$ selectivity were achieved for all three particles. In the oxidizer, NOx was not detected. The results of exhaust gas analysis showed that inherent $CO_2$ separation and NOx-free combustion are possible in the LNG fueled chemical-looping combustion system with NiO/bentonite, $NiO/NiAl_2O_4$ and $Ca_xO_y/CoAl_2O_4$ particles.

  • PDF

Effect of Fuel on Synthesis of Nanocrystalline Ni particles by a Combustion Synthesis Process (연소합성법을 이용한 Ni 분말 합성에서 첨가 연료의 영향)

  • 정충환;신형철;이희균;홍계원;윤순길
    • Journal of Powder Materials
    • /
    • v.8 no.1
    • /
    • pp.13-19
    • /
    • 2001
  • Ni and NiO particles were made by a combustion synthesis process. The characteristics of synthesized powders were investigated with various kinds and amounts of fuels such as urea, citric acid and glycine. Ni phase particles without NiO phase were obtained through combustion synthesis process in air atmosphere with-out further calcinations process, when the content of glycine was 2.44 times of the stoichiometric ratio in the precursor solution. Primary particle sizes of synthesized Ni and NiO particles were about 20∼30 nm.

  • PDF

Microstructure and Properties of Nano-Sized Ni-Co Particulate Dispersed $Al_2O_3$ Matrix Nanocomposites

  • Oh, Sung-Tag;Mutsuo Sando;Koichi Niihara
    • Journal of Powder Materials
    • /
    • v.5 no.4
    • /
    • pp.334-339
    • /
    • 1998
  • In purpose of introducing the inverse magnetostrictive properties into the structural ceramics, $Al_2O_3$ based nanocomposites dispersed with nano-sized Ni-Co particles were studied. The composites were fabricated by the hydrogen reduction and hot-pressing of $Al_2O_3$ and NiO-CoO mixed powders. The mixtures were prepared by using Ni- and Co-nitrate $(Ni(NO_3)_2\;{\cdot}\;6H_2O\;and\;Co(NO_3)_2\;{\cdot}\6H_2O)$ as source materials for the Ni-Co particles. Microstructural observations revealed that nano-sized Ni-Co particles were dispersed homogeneously at $Al_2O_3$ grain boundaries. High strength above 1 GPa was obtained for the $Al_2O_3/10$ wt% Ni-Co nanocomposite fabricated by a controlled powder preparation process. The inverse magnetostrictive response to applied stress was obtained due to the presence of dispersed Ni-Co particles, which indicates a possibility to incorporate new functions into the structural ceramics without loosing the mechanical properties.

  • PDF

Reaction Characteristics of Five Kinds of Oxygen Carrier Particles for Chemical-Looping Combustor (매체순환식 가스연소기 적용을 위한 5가지 산소공여입자들의 반응특성)

  • Ryu, Ho-Jung;Kim, Gyoung-Tae;Lim, Nam-Yun;Bae, Seong-Youl
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.14 no.1
    • /
    • pp.24-34
    • /
    • 2003
  • For gaseous fuel combustion with inherent $CO_2$ capture and low NOx emission, chemical-looping combustion may yield great advantages for the savings of energy to $CO_2$ separation and suppressing the effect on environment, In chemical-looping combustor, fuel is oxidized by metal oxide medium in a reduction reactor. Reduced particles are transported to oxidation reactor and oxidized by air and recycled to reduction reactor. The fuel and the air are never mixed, and the gases from reduction reactor, $CO_2$ and $H_2O$, leave the system as separate stream. The $H_2O$ can be easily separated by condensation and pure $CO_2$ is obtained without any loss of energy for separation. In this study, five oxygen carrier particles such as NiO/bentonite, NiO/YSZ, $(NiO+Fe_2O_3)VYSZ$, $NiO/NiAl_2O_4$, and $Co_{\chi}O_y/CoAl_2O_4$ were examined &om the viewpoints of reaction kinetics, oxygen transfer capacity, and carbon deposition characteristics. Among five oxygen particles, NiO/YSZ particle is superior in reaction rate, oxygen carrier capacity, and carbon deposition to other particles. However, at high temperature ($>900^{\circ}C$), NiO/bentonite particle also shows enough reactivity and oxygen carrier capacity to be applied in a practical system.

A study on the Ni formation by reduction of NiO nano crystals (NiO 나노 결정의 환원 반응에 의한 Ni 형성 거동에 관한 연구)

  • Kim, Chang-Sam;Kang, Seung-Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.5
    • /
    • pp.246-250
    • /
    • 2009
  • The Ni formation behavior from the reduction of NiO nano crystals in the $H_2/N_2$ gas mixtures. The NiO nano crystals were synthesized by heat-treating nickel nitrate$(Ni(NO_3)_2\cdot6H_O)$ in the air at $500^{\circ}C$, and had an octahedral shape and the particle size of 200~500 nm. The NiO nano-crystals had well-developed (111) planes which is hardly formed in normal synthetic conditions. The reduction process was carried out at 300 and $600^{\circ}C$ for 15 and 60 minutes, respectively. When the NiO nano-crystals were reduced at $300^{\circ}C$, the Ni particles sustained the same octahedral shape as NiO, while Ni particles were to agglomerate at $600^{\circ}C$.

Synthesis of NiTi Alloy Powder by the Reaction of NiO-TiH2 Mixing Powders (NiO-TiH2 혼합분말의 반응을 이용한 NiTi 합금분말 제조)

  • Jeon, Ki Cheol;Lee, Han-Eol;Yim, Da-Mi;Oh, Sung-Tag
    • Journal of Powder Materials
    • /
    • v.22 no.4
    • /
    • pp.266-270
    • /
    • 2015
  • The synthesis of NiTi alloy powders by hydrogen reduction and dehydrogenation process of NiO and $TiH_2$ powder mixtures is investigated. Mixtures of NiO and $TiH_2$ powders are prepared by simple mixing for 1 h or ball milling for 24 h. Simple-mixed mixture shows that fine NiO particles are homogeneously coated on the surface of $TiH_2$ powders, whereas ball milled one exhibits the morphology with mixing of fine NiO and $TiH_2$ particles. Thermogravimetric analysis in hydrogen atmosphere reveals that the NiO and $TiH_2$ phase are changed to metallic Ni and Ti in the temperature range of 260 to $290^{\circ}C$ and 553 to $639^{\circ}C$, respectively. In the simple-mixed powders by heat-up to $700^{\circ}C$, agglomerates with solid particles and solidified liquid phase are observed, and the size of agglomerates is increased at $1000^{\circ}C$. From the XRD analysis, the presence of liquid phase is explained by the formation and melting of $NiTi_2$ inter-metallic compound due to an exothermic reaction between Ni and Ti. The simple-mixed powders, heated to $1000^{\circ}C$, lead to the formation of NiTi phase but additional Ni-, Ti-rich and Ti-oxide phases. In contrast, the microstructure of ball-milled powders is characterized by the neck-grown particles, forming $Ni_3Ti$, Ti-oxide and unreacted Ni phase.

Selection of the Best Oxygen Carrier Particle for Syngas Fueled Chemical-Looping Combustor (합성가스 연소 매체순환식 가스연소기 적용을 위한 최적 산소공여입자 선정)

  • Ryu, Ho-Jung;Kim, Ji-Woong;Jo, Wan-Kuen;Park, Moon-Hee
    • Korean Chemical Engineering Research
    • /
    • v.45 no.5
    • /
    • pp.506-514
    • /
    • 2007
  • To select the best oxygen carrier particle for syngas fueled chemical-looping combustor, the reduction reactivity and carbon deposition characteristics were determined in a thermogravimetric analyzer. Four kinds of oxygen carrier particles (NiO/bentonite, $NiO/LaAl_{11}O_{18}$, $Co_xO_y/CoAl_2O_4$, $NiO/NiAl_2O_4$) were tested with the simulated syngas (30% $H_2$, 10% $CO_2$, 60% CO) as a reduction gas. With each of these particles, the maximum conversion and oxygen transfer capacity increase with increasing the reduction temperature At the given experimental range, the optimum operating temperature to maximize oxygen transfer rate is found to be $900^{\circ}C$ and carbon deposition on the particles could avoid at the temperature above $800^{\circ}C$. Among four kinds of oxygen carrier particles, the NiO-based particles exhibits better reactivity than the CoO-based particle. Moreover, the NiO/bentonite particle produces the best reactivity based on the oxygen transfer rate and the degree of carbon deposition. The measured oxygen transfer rate increases as the metal oxide content in NiO/bentonite particle is increased thereby higher metal oxide contents could provide stable operation of chemical-looping combustor.

A Study on the Mechanism for the Formation of Partices in electroless Ni Composite Coating(I) (무전해 Ni 복합도금 과정에서 분발의 공석 기구에 대한 연구(I))

  • 이원해;이승평
    • Journal of the Korean institute of surface engineering
    • /
    • v.22 no.2
    • /
    • pp.69-77
    • /
    • 1989
  • Codeposion of inert particles particles in a metallic mateix by electroless plating process involves two phenomena. Firstly, the adsorption of inercles and secondly, the adsorption of inert particles on the cathode. In the present paper the first adsorption phenomenon and in the next paper the second ane are studied in greaterdetail for the Ni-SiCc, Ni-Al2AO3 and Ni-WC systems. Measurements of the Zeta potentials for the SiC and Al2AO3 particles have been in different electrolyte solutions and the ionic species adsorbed on the Particles studied. The addition of sodium acetate, trisodium citrate and sodium phosphinate to nikel sulface sruomotes the zeta potential of SiC and Al2O3 particles, but zeta phosphinate to nickel is more positive than Al2O3 particles although the amount of nickel ion adsorbrd on the Al2O3 particles become greater than that of SiC particles. It is suggested that this is due to adsortion of Na ion onto the surface SiC particles.

  • PDF

Reactivity and Attrition Resistance of Three Oxygen Carrier Particles for Chemical-Looping Combustor (매체순환식 가스연소기 적용을 위한 세 가지 산소공여입자들의 반응성 및 내마모성)

  • Ryu, Ho-Jung;Jin, Gyoung-Tae
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.3
    • /
    • pp.208-219
    • /
    • 2004
  • To find a suitable oxygen carrier particle for a 50kW chemical-looping combustor, which was designed and installed to demonstrate continuous oxidation and reduction, three oxygen carrier particles(NiO/bentonite, $NiO/NiAl_2O_4$, $CoO_x/CoAl_2O_4$) were prepared. The reactivity and the attrition resistance of particles were measured and investigated by a thermo-gravimetrical analyzer and an attrition test apparatus respectively. From the viewpoints of oxygen transfer capacity, optimum reaction temperature(operating temperature range), reaction rate, carbon deposition rate, and attrition resistance, NiO/bentonite particle showed better performance than the other particles, therefore we selected NiO/bentonite particle as an optimum oxygen carrier particle.