• 제목/요약/키워드: NiO catalyst

검색결과 274건 처리시간 0.033초

Ni계 촉매상에서 가솔린의 자열 개질반응에 (Autothermal Reforming)의한 수소제조 및 응용 (Hydrogen Production by Autothermal Reforming Reaction of Gasoline over Ni-based Catalysts and it Applications)

  • 문동주;류종우;유계상;이병권
    • 한국수소및신에너지학회논문집
    • /
    • 제15권4호
    • /
    • pp.274-282
    • /
    • 2004
  • This study focused on the development of high performance catalyst for autothermal reforming (ATR) of gasoline to produce hydrogen. The ATR was carried out over MgO/Al2O3 supported metal catalysts prepared under various experimental conditions. The catalysts before and after reaction were characterized by N2-physisorption, CO-chemisorption, SEM and XRD. The performance of supported multi-metal catalysts were better than that of supported mono-metal catalysts. Especially, it was observed that the conversion of iso-octane over prepared Ni/Fe/MgO/Al2O3 catalyst was 99.9 % comparable with commercial catalyst (ICI) and the selectivity of hydrogen over the prepared catalyst was 65% higher than ICI catalyst. Furthermore, it was identified that the sulfur tolerance of prepared catalyst was much better than ICI catalyst based on the ATR reaction of iso-octane containing sulfur of 100 ppm. Therefore, Ni/Fe/MgO/Al2O3 catalyst can be applied for a fuel reformer, hydrogen station and on-board reformer in furl cell powered vehicles.

A Study on the Sulfur-Resistant Catalysts for Water Gas Shift Reaction III. Modification of $Mo/γ-Al_2O_3$ Catalyst with Iron Group Metals

  • 박진남;김재현;이호인
    • Bulletin of the Korean Chemical Society
    • /
    • 제21권12호
    • /
    • pp.1233-1238
    • /
    • 2000
  • $Mo/{\gamma}-Al_2O_3catalysts$ modified with Fe, Co, and Ni were prepared by impregnation method and catalytic activity for water gas shift reaction was examined. The optimum amount of Mo loaded for the reaction was 10 wt% $MoO_3$ to ${\gamma}-Al_2O_3.$ The catalytic activity of $MoO_3/{\gamma}-Al_2O_3was$ increased by modifying with Fe, Co, and Ni in the order of Co${\thickapprox}$ Ni > Fe. The optimum amounts of Co and Ni added were 3 wt% based on CoO and NiO to 10 wt% $MoO_3/{\gamma}-Al_2O_3$, restectively. The TPR (temperature-programmed reduction) analysis revealed that the addition of Co and Ni enganced the reducibility of the catalysts. The results of both catalytic activity and TPR experiments strongly suggest that the redox property of the catalyst is an important factor in water gas shift reaction on the sulfided Mo catalysts, which could be an evidence of oxy-sulfide redox mechanism.

황-요오드 열화학 수소 생산 공정에서 니켈-백금 이원금속 촉매를 이용한 요오드화수소 분해 특성 (Charateristics of Hydrogen Iodide Decomposition using Ni-Pt Bimetallic Catalyst in Sulfur-Iodine Process)

  • 김수영;고윤기;박주식;배기광;김영호
    • 한국수소및신에너지학회논문집
    • /
    • 제23권1호
    • /
    • pp.1-7
    • /
    • 2012
  • This study was performed to develop a low Pt content catalyst as a catalyst for HI decomposition in S-I process. Bimetallic catalysts added various amounts of Pt on a silica supported Ni catalyst were prepared by impregnation method. HI decomposition was carried out using a fixed bed reactor. As a result, Ni-Pt bimetallic catalyst showed enhanced catalytic activity compared with each monometallic catalyst. Deactivation of Ni-Pt catalyst was not observed while deactivation of Ni monometallic catalyst was rapidly occurred in HI decomposition. The HI conversion of Ni-Pt bimetallic catalyst was increased similar to Pt catalyst with increase of the reaction temperature over a temperature range 573K to 773K. From the TG analysis, it was shown that $NiI_2$ remained on the Ni(5.0)-Pt(0.5)/$SiO_2$ catalyst after the HI decomposition reaction was decomposed below 700K. It seems that small amount of Pt in bimetallic catalyst increase the decomposition of $NiI_2$ generated after the decomposition of HI. Consequently, it was considered that the activity of Ni-Pt bimetallic catalyst was kept during the HI decomposition reaction.

불활성 가스의 O2와 CO 불순물 제거를 위한 Ni 촉매의 물성 평가 (Assessment of Ni Catalyst Properties for Removal of O2 and CO Impurity in Inert Gas)

  • 김광배;진새라;김은석;임예솔;이현준;김성훈;노윤영;송오성
    • 한국산학기술학회논문지
    • /
    • 제21권4호
    • /
    • pp.588-595
    • /
    • 2020
  • 반도체 산업용 9N 이상의 초고순도 N2, Ar 등 불활성 가스 제조를 위해 가스 정제공정에 사용되고 있는 Ni 촉매의 물성 평가 및 촉매적 특성을 확인하였다. 조성이 다른 원기둥 형태의 C1, 츄러스 형태의 C2의 두 가지 Ni 촉매에 대해 비교 평가를 진행하였다. Ni 촉매의 형상과 미세구조를 분석하기 위해 광학현미경과 FE-SEM을 이용하였으며, 조성 확인 및 물성을 분석하기 위해 EDS, XRD, 그리고 micro-Raman 분석을 이용하였다. 또한 Ni 촉매의 비표면적 및 촉매적 특성을 확인하기 위해 BET, Pulse Titration 분석을 진행하였다. 조성 분석결과, C1의 경우, 상대적으로 graphite가 불순물로 다량 포함되어 있는 것을 확인하였으며, C2는 C1에 비해 Ni의 함량이 높은 것을 확인하였다. 비표면적 분석 결과, C2의 비표면적이 C1보다 약 1.69배 정도 큰 것을 확인할 수 있었다. 촉매적 특성분석 결과, 상온에서 O2와 CO 불순물 제거 정도가 C2가 우수함을 확인하였다. 따라서 반도체 산업용 초고순도 불활성 기체 제조를 위한 Ni 촉매로는 불순물이 적고, 비표면적이 크며, 상온에서 O2와 CO 제거 성능이 우수한 C2가 적합함을 확인하였다.

Ni/Ru-K/Al2O3 촉매를 이용한 톨루엔 수증기 개질 (Steam Reforming of Toluene over Ni/Ru-K/Al2O3 Catalyst)

  • 오건웅;박서윤;이재구;윤상준
    • 한국수소및신에너지학회논문집
    • /
    • 제25권5호
    • /
    • pp.459-467
    • /
    • 2014
  • The catalytic steam reforming of toluene, a major component of biomass tar, was studied using several catalysts at various temperatures $400-800^{\circ}C$, kind of metal, and metal loading content. Ru and K promoted Ni-base catalyst were prepared, and used for steam reforming of toluene with steam/toluene molar ratio of 25. Concentration of toluene in reactant flow is $30g/Nm^3$ that is usual content of tar from biomass gasifier. The result from experiments showed that $H_2$ content in product gas and toluene conversion increased with temperature. Where in high temperature range, CO and $CO_2$ content in product gas were affected mainly by Boudouard reaction. Ni/Ru-K(3wt%)/$Al_2O_3$ catalyst showed best performance on steam reforming of toluene than used catalysts in this study at whole temperature. Catalysts have been characterized by XRD, TG. XRD analysis displayed that Ni particle size on Ni/Ru-K (3wt%)/$Al_2O_3$ catalyst was 29.4nm. Activation energy of Ni/Ru-K (3wt%)/$Al_2O_3$ catalyst was calculated 36.8kJ/mol by Arrhenius plot.

$Ni/\gamma -Al_2O_3$ Catalyst Prepared by Liquid Phase Oxidation for Carbon Dioxide Reforming of Methane

  • 정경수;조병율;이호인
    • Bulletin of the Korean Chemical Society
    • /
    • 제20권1호
    • /
    • pp.89-94
    • /
    • 1999
  • Carbon dioxide reforming of methane on Ni/γ-Al2O3 catalyst was studied. A new 10 wt% Ni/γ-Al2O3 catalyst prepared by the liquid phase oxidation method (L10O) exhibited much higher activity as well as resistances to both sintering and coke formation during the reaction than the catalyst prepared by the conventional impregnation method (D10). The electrically strong attractive interaction between nickel and support during the liquid phase oxidation process and the resultant high nickel dispersion made the L10 have superior activity and stability to the D10. To elucidate the results, the experiments with nickel catalysts on the other supports as well as 7-AI203 were performed. The effect of sodium as a promoter was also studied.

Ru/$Al_2O_3$ 촉매를 이용한 바이오매스 타르 개질 특성 (Tar Reforming for Biomass Gasification by Ru/$Al_2O_3$ catalyst)

  • 박영수;김우현;길상인;윤진한;민태진;노선아
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.247-250
    • /
    • 2008
  • Biomass gasification is a promising technology for producing a fuel gas which is useful for power generation systems. In biomass gasification processes, tar formation often causes some problems such as pipeline plugging. Thus, proper tar treatment is necessary. So far, nickel (Ni)-based catalysts have been intensively studied for the catalytic tar removal. However, the deactivation of Ni-based catalysts takes place because of coke deposition and sintering of Ni metal particles. To overcome these problems, we have been using ruthenium (Ru)-based catalyst for tar removal. It is reported by Okada et al., that a Ru/$Al_2O_3$ catalyst is very effective for preventing the carbon deposition during the steam reforming of hydrocarbons. Also, this catalyst is more active than the Ni-based catalyst at a low steam to carbon ratio (S/C). Benzene was used for the tar model compound because it is the main constituent of biomass tar and also because it represents a stable aromatic structure apparent in tar formed in biomass gasification processes. The steam reforming process transforms hydrocarbons into gaseous mixtures constituted of carbon dioxide ($CO_2$), carbon monoxide (CO), methane ($CH_4$) and hydrogen ($H_2$).

  • PDF

합성천연가스 생산을 위한 고효율 Ni계 촉매의 제법에 따른 촉매의 반응특성 조사 (Reactivity Test of Ni-based Catalysts Prepared by Various Preparation Methods for Production of Synthetic Nature Gas)

  • 장선기;박노국;이태진;고동준;임효준;변창대
    • 한국수소및신에너지학회논문집
    • /
    • 제22권2호
    • /
    • pp.249-256
    • /
    • 2011
  • In this study, the Ni-based catalysts for the production of synthetic natural gas were prepared by various preparation methods such as the co-precipitation, precipitation, impregnation and physical mixing methods. The ranges of the reaction conditions were the temperatures of 250~$350^{\circ}C$, $H_2$/CO mole ratio of 3.0, the pressures of 1 atm and the space velocity of 20000 $ml/g_{-cat{\cdot}}{\cdot}h$. It was found that the catalyst prepared by precipitation method had higher CO conversion than the catalyst prepared by co-precipitation method. While the catalyst prepared by precipitation method had the formation of NiO structure, the catalyst prepared by co-precipitation method had the formation of $NiAl_2O_4$ structure. It was confirmed that Ni-based catalyst prepared by the physical mixing method had the lowest CO conversion because it was deactivated by the production of $Ni_3C$ during the methanation. As a result, it was shown clearly that Ni-based catalysts prepared by impregnation method expressed the highest catalytic activity in CO methanation.

충전층 플라즈마 반응기에서 Ni-CeO2/γ-Al2O3 촉매를 이용한 프로페인-합성 가스 건식 개질 (Dry reforming of Propane to Syngas over Ni-CeO2/γ-Al2O3 Catalysts in a Packed-bed Plasma Reactor)

  • 라미아 술타나;Md. 샤히누르 라만;M.S.P. 수드하카란;Md. 목터 호세인;목영선
    • 청정기술
    • /
    • 제25권1호
    • /
    • pp.81-90
    • /
    • 2019
  • 프로페인($C_3H_8$)의 건식 개질($CO_2$ 개질)을 통한 합성 가스($H_2$와 CO 혼합물) 제조를 위해 $Ni-CeO_2/{\gamma}-Al_2O_3$ 촉매가 충진된 유전체 장벽 방전 플라즈마 반응기를 사용하였다. 열 또는 플라즈마에 의해 환원된 $Ni-CeO_2/{\gamma}-Al_2O_3$ 촉매를 사용하여 $C_3H_8/CO_2$ 비율 1/3, 총 유량 $300mL\;min^{-1}$에서 플라즈마-촉매 건식 개질을 수행하였다. 건식 개질에 대한 촉매 활성은 온도범위 $500{\sim}600^{\circ}C$에서 평가되었다. $Ni-CeO_2/{\gamma}-Al_2O_3$ 촉매 제조를 위해 전구물질 수용액(질산니켈, 질산세륨)으로 함침된 ${\gamma}-Al_2O_3$를 공기 분위기에서 소성시킨 후, $H_2/Ar$ 분위기에서 환원시켰다. 촉매 특성 조사에는 X-선 회절분석기(XRD), 투과전자현미경(TEM), 전계 방출 주사전자현미경(FE-SEM), 승온 탈착($H_2-TPD$, $CO_2-TPD$) 및 라만 분광기가 이용되었다. 열로 환원된 촉매와 비교하면 플라즈마 방전하에서 환원된 $Ni-CeO_2/{\gamma}-Al_2O_3$ 촉매가 개질 반응을 통한 합성 가스 생산에서 보다 우수한 촉매 활성을 나타내었다. 또한, 플라즈마로 환원된 $Ni-CeO_2/{\gamma}-Al_2O_3$가 개질 반응의 문제점인 탄소퇴적 관점에서 장기 촉매 안정성을 보여주었다.

Rh-Ni and Rh-Co Catalysts for Autothermal Reforming of Gasoline

  • Jung, Yeon-Gyu;Lee, Dae Hyung;Kim, Yongmin;Lee, Jin Hee;Nam, Suk-Woo;Choi, Dae-Ki;Yoon, Chang Won
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권1호
    • /
    • pp.231-235
    • /
    • 2014
  • Rh doped Ni and Co catalysts, Rh-M/$CeO_2$(20 wt %)-$Al_2O_3$ (0.2 wt % of Rh; M = Ni or Co, 20 wt %) were synthesized to produce hydrogen via autothermal reforming (ATR) of commercial gasoline at $700^{\circ}C$ under the conditions of a S/C ratio of 2.0, an O/C ratio of 0.84, and a gas hourly space velocity (GHSV) of $20,000h^{-1}$. The Rh-Ni/$CeO_2$(20 wt %)-$Al_2O_3$ catalyst (1) exhibited excellent activities, with $H_2$ and ($H_2$+CO) yields of 2.04 and 2.58 mol/mol C, respectively. In addition, this catalyst proved to be highly stable over 100 h without catalyst deactivation, as evidenced by energy dispersive spectroscopy (EDX) and elemental analyses. Compared to 1, Rh-Co/$CeO_2$(20 wt %)-$Al_2O_3$ catalyst (2) exhibited relatively low stability, and its activity decreased after 57 h. In line with this observation, elemental analyses confirmed that nearly no carbon species were formed at 1 while carbon deposits (10 wt %) were found at 2 following the reaction, which suggests that carbon coking is the main process for catalyst deactivation.