• Title/Summary/Keyword: NiO buffer

Search Result 95, Processing Time 0.026 seconds

The effects of $O_2$ partial pressure on the property of buffer layer in YSZ/CeO$_2$/Ni (YSZ/CeO$_2$/Ni 에서 산소 분압의 완층충 특성에 대한 영향)

  • Lee, Kyu-Han;Youm, Do-Jun
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.326-328
    • /
    • 1999
  • We investigated the effects of residual gas partial pressure on the property of a CeO$_2$ buffer layer on a textured Ni tape, where the buffer layer was deposited by e-beam evaporation. The oxygen partial pressure were varied from 10$^{-7}$ to 10$^{-4}$ Torr. we also changed the surface condition for the surface oxygenation. We'll describe the detail of the resultant textures of the buffer layers and effects of YBCO growth on them

  • PDF

The Evolution of Preferred Orientation and Morphology of NiO Thin Films under Variation of Plasma Source and RF Power (Plasma source와 RF power에 따른 NiO박막의 우선배향성 및 표면형상)

  • Hyunwook Ryu;Park, Jinseong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.121-121
    • /
    • 2003
  • NiO thin films are very attractive for use as an antiferromagnetic layer, p-type transparent conducting films, in electrochromic devices and functional sensor layer for chemical sensors, due to their excellent chemical stability, as well as optical, electrical and magnetic properties. In addition, (100)- and (111)-oriented NiO films can be used as buffer layers on which to deposit other oriented oxide films, such as c-axis-oriented perovskite-type ferromagnetic films and superconducting films, because of the similarity in symmetry of oxygen ion lattice and lattice constants between the NiO films and the oriented oxide films. Thus, controlling the crystallographic orientation and surface roughness of the NiO films for a buffer layer are very important.

  • PDF

Role of a ZnO buffer layer for the formation of epitaxial NiO films

  • Gwon, Yong-Hyeon;Cheon, Seong-Hyeon;Lee, Ju-Ho;Lee, Jeong-Yong;Jo, Hyeong-Gyun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.85-85
    • /
    • 2012
  • NiO는 니켈 공공과 침입형 산소 이온에 의한 비화학적양론 특성 때문에 자발적으로 p-형 반도체 특성을 나타내는 것으로 알려져 있다. NiO는 3.7 eV 의 넓은 밴드갭을 가지고 있어 투명소자를 위한 hole injection layer 나 hole transport layer로 사용하기 위한 연구가 많이 이루어지고 있다. 또한, 안정적인 p-형 반도체 특성은 n-형 산화물 반도체와의 접합을 통해 복합소자의 구현이 용이하기 때문에, ZnO 등과의 접합을 통한 소자 구현이 가능하다.[1] 하지만, 기존의 많은 연구에서는 내부의 결함이 많이 존재하는 다결정 박막을 사용하였기 때문에, 전하의 이동에 제한이 발생해, 충분한 소자 특성을 나타내지 못하였다. 최근 Dutta의 연구에 의하면, 결정질 사파이어 기판위에 박막을 성장할 경우 [111] 방향으로 우선 배향성을 가진 NiO 박막을 얻을 수 있다고 알려져 있다.[2] 본 실험에서는 NiO 박막을 이용한 PN 접합소자 구현을 위해 사파이어 위에 p-NiO 박막을 에피택셜하게 성장한 후 구조적 특성을 분석하였으며, n-ZnO 박막을 그 위에 성장하여 소자를 제작하였다. 그 결과 ZnO 또한 에피택셜한 성장을 하는 것을 확인할 수 있었다. 성장순서에 따른 PN 접합구조 특성을 확인하기 위해 사파이어 위에 ZnO 를 성장시킨 후 NiO 를 성장시킨 결과 NiO 박막의 우선성장 방향이 [100]으로 변하는 것을 확인할 수 있었다.

  • PDF

Electrical and Luminescent Properties of OLEDs by Nickel Oxide Buffer Layer with Controlled Thickness (NiO 완충층 두께 조절에 의한 OLEDs 전기-광학적 특성)

  • Choi, Gyu-Chae;Chung, Kook-Chae;Kim, Young-Kuk;Cho, Young-Sang;Choi, Chul-Jin;Kim, Yang-Do
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.10
    • /
    • pp.811-817
    • /
    • 2011
  • In this study, we have investigated the role of a metal oxide hole injection layer (HIL) between an Indium Tin Oxide (ITO) electrode and an organic hole transporting layer (HTL) in organic light emitting diodes (OLEDs). Nickel Oxide films were deposited at different deposition times of 0 to 60 seconds, thus leading to a thickness from 0 to 15 nm on ITO/glass substrates. To study the influence of NiO film thickness on the properties of OLEDs, the relationships between NiO/ITO morphology and surface properties have been studied by UV-visible spectroscopy measurements and AFM microscopy. The dependences of the I-V-L properties on the thickness of the NiO layers were examined. Comparing these with devices without an NiO buffer layer, turn-on voltage and luminance have been obviously improved by using the NiO buffer layer with a thickness smaller than 10 nm in OLEDs. Moreover, the efficiency of the device ITO/NiO (< 5 nm)/NPB/$Alq_3$/ LiF/Al has increased two times at the same operation voltage (8V). Insertion of a thin NiO layer between the ITO and HTL enhances the hole injection, which can increase the device efficiency and decrease the turn-on voltage, while also decreasing the interface roughness.

Fabrication of $CeO_2$ Buffer Layer Using MOD Process

  • Kim, Young-Kuk;Yoo, Jai-Moo;Chung, Kook-Chae;Ko, Jae-Woong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.4
    • /
    • pp.19-21
    • /
    • 2006
  • Biaxially textured Ni was fabricated by electrodeposition process and delaminated from the biaxially textured cathode surface for further buffer layer deposition process. Those electrode posited Ni substrates showed well-developed biaxial texture and smooth surface. In order to improve the thermal stability of Ni substrates, Mn was alloyed by adding Mn precursor into the electrodeposition bath. Subsequently, $CeO_2$ buffer layers are deposited by MOD process to prevent interfacial reaction between superconductor and substrates. In particular, Bismuth oxide was added to $CeO_2$ to realize lower temperature processing of buffer layers. The microstructure and texture development of each layers have been investigated. Preliminary results shows that all electro/chemical process can be a candidate for cost effective route to YBCO coated conductor.

A study on $CeO_2$ buffer layer on biaxially textured Ni-3%W substrate deposited by electron beam evaporation with high deposition rate (전자빔 증착법으로 이축배향된 Ni-3%W 기판 위에 높은 증착률로 제조된 $CeO_2$ 완충층에 대한 연구)

  • Kim, H.J.;Lee, J.B.;Kim, B.J.;Hong, S.K.;Lee, H.J.;Kwon, B.G.;Lee, H.G.;Hong, G.W.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.13 no.1
    • /
    • pp.1-5
    • /
    • 2011
  • [ $CeO_2$ ]has been widely used for single buffer layer of coated conductor because of superior chemical and structural compatibility with $ReBa_2Cu_3O_{7-{\delta}}$(Re=Y, Nd, Sm, Gd, Dy, Ho, etc.). But, the surface of $CeO_2$ layer showed cracks because of the large difference in thermal expansion coefficient between metal substrate and deposited $CeO_2$ layer, when thickness of $CeO_2$ layer exceeds 100 nm on the biaxially textured Ni-3%W substrate. The deposition rate has been limited to be less than 6 $\AA$/sec in order to get a good epitaxy. In this research, we deposited $CeO_2$ single buffer layers on biaxially textured Ni-3%W substrate with 2-step process such as thin nucleation layer(>10 nm) with low deposition rate(3 $\AA$/sec) and thick homo epitaxial layer(>240 nm) with high deposition rate(30 $\AA$/sec). Effect of deposition temperature on degree of texture development was tested. Thick homo epitaxial $CeO_2$ layer with good texture without crack was obtained at $600^{\circ}C$, which has ${\Delta}{\phi}$ value of $6.2^{\circ}$, ${\Delta}{\omega}$ value of $4.3^{\circ}$ and average surface roughness(Ra) of 7.2 nm within $10{\mu}m{\times}10{\mu}m$ area. This result shows the possibility of preparing advanced Ni substrate with simplified architecture of single $CeO_2$ layer for low cost coated conductor.

Deposition of $CeO_2$ buffer layer for YBCO coated conductors on biaxially textured Ni substrate by MOCVD technique (양축 정렬된 Ni기판 위에 MOCVD법에 의한 YBCO 초전도 선재용 $CeO_2$ 완충층의 증착)

  • 김호진;주진호;전병혁;정충환;박순동;박해웅;홍계원;김찬중
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.2
    • /
    • pp.21-26
    • /
    • 2002
  • Textured CeO2 buffer layers for YBCO coated conductors were deposited on biaxially textured Ni substrate by metalorganic chemical vapor deposition (MOCVD). The degree of texture of deposited $CeO_2$ films was strong1y dependent on the deposition temperature (Td) and oxygen Partial Pressure(PO2). ($\ell$00) textured $CeO_2$ films were well deposited at T=500~52$0^{\circ}C$. PO2=0.90~3.33 Torr. The surface morphology showed that the films consisted of columnar CeO2 films grown from the Ni substrates. The root mean square roughness of CeO$_2$ films estimated by atomic force microscopy(AFM) increased as the deposition temperature(Td) increa- sed. The growth rate of the $CeO_2$ films deposited at T=52$0^{\circ}C$ and PO2=2.30 Torr was 150~200 nm/min that was much faster than that of other Physical deposition methods.

Fabrication of YSZ buffer layer for YBCO coated conductor by MOCVD method (MOCVD법에 의한 YBCO coated conductor용 YSZ 완충층 제작)

  • 선종원;김형섭;정충환;전병혁;김찬중
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.129-132
    • /
    • 2003
  • Yttria stabilized zirconia (YSZ) buffer layers were deposited by a metal organic chemical vapor deposition (MOCVD) technique using single liquid source for the application of YBa$_2$Cu$_3$$O_{7-x}$ (YBCO) coated conductor. Y:Zr mole ratio was 0.2:0.8, and tetrahydrofuran (THF) was used as a solvent. The (100) single crystal MgO substrate was used for searching deposition condition. Bi-axially oriented CeO$_2$ and NiO films were fabricated on {100}〈001〉 Ni substrate by the same method and used as templates. At a constant working pressure of 10 Torr, the deposition temperatures (660~80$0^{\circ}C$) and oxygen flow rates (100~500 sccm) were changed to find the optimum deposition condition. The best (100) oriented YSZ film on MgO was obtained at 74$0^{\circ}C$ and $O_2$ flow rate of 300 sccm. For YSZ buffer layer with this deposition condition on CeO$_2$/Ni template, full width half maximum (FWHM) values of the in-plane and out-of-plane alignments were 10.6$^{\circ}$ and 9.8$^{\circ}$, respectively. The SEM image of YSZ film on CeO$_2$/Ni showed surface morphologies without microcrack.k.

  • PDF

세라믹 선재의 전기 구조적 특성

  • Lee, Sang-Heon;Lee, Young-Hie
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05b
    • /
    • pp.54-56
    • /
    • 2005
  • Fabrication of c-axis oriented $(Hg_{0.75}Rc_{0.25})Ba_2Ca_2Cu_3O_y$ thick fabricated has been attempted using Ni substrates with the buffer layer of Cr or NiO. Coexistence of $(Hg_{0.75}Rc_{0.25})Ba_2Ca_3Cu_4O_y$ pellets wad found to stabilize $(Hg_{0.75}Rc_{0.25})Ba_2Ca_2Cu_3O_y$ phase of the tape. The c-axis oriented tapes were reproducibly obtained on the NiO/Ni substerate and they recorded high $B_{irr}$ at 77K.$(Hg_{0.75}Rc_{0.25})Ba_2Ca_2Cu_3O_y$ 1223.

  • PDF

Epitaxial Growth of $CeO_2\;and\;Y_2O_3$ Buffer-Layer Films on Textured Ni metal substrate using RF Magnetron Sputtering (이축정렬된 Ni 금속모재에 RF 마그네트론 스퍼터링에 의해 증착된 $CeO_2$$Y_2O_3$ 완충층 박막 특성)

  • Oh, Y.J.;Ra, J.S.;Lee, E.G.;Kim, C.J.
    • Progress in Superconductivity
    • /
    • v.7 no.2
    • /
    • pp.120-129
    • /
    • 2006
  • We comparatively studied the epitaxial growth conditions of $CeO_2$ and $Y_2O_3$ thin buffers on textured Ni tapes using rf magnetron sputtering and investigated the feasibility of getting a single mixture layer or sequential layers of $CeO_2$ and $Y_2O_3$ for more simplified buffer architecture. All the buffer layers were first deposited using the reducing gas of $Ar/4%H_2$ and subsequently the reactive gas mixture of Ar and $O_2$, The crystalline quality and biaxial alignment of the films were investigated using X-ray diffraction techniques (${\Theta}-2{\Theta},\;{\phi}\;and\;{\omega}\;scans$, pole figures). The $CeO_2$ single layer exhibited well developed (200) epitaxial growth at the condition of $10%\;O_2$ below an $450^{\circ}C$, but the epitaxial property was decreased with increasing the layer thickness. $Y_2O_3$ seldom showed optimum condition for (400) epitaxial growth. The sequential architecture of $CeO_2/Y_2O_3/CeO_2$ having good epitaxial property was achieved by sputtering at a temperature of $700^{\circ}C$ on the initial $CeO_2$ bottom layer sputtered at $400^{\circ}C$. Cracking of the sputtered buffer layers was seldom observed except the double layer structure of $CeO_2/Y_2O_3$.

  • PDF