• Title/Summary/Keyword: NiFe thin film

Search Result 109, Processing Time 0.028 seconds

Fabrication of Thin film Magnetoresistive Device and the Dependency of Applied Manetic Field Direction (박막 자기저항 소자 제작 및 출력의 인가자장 각도 의존성)

  • Min, Bok-Ki;Lee, Won-Jae;Jeong, Soon-Jong;Song, Jae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.50-54
    • /
    • 2003
  • The output characteristics of thin film NiO/NiFe bilayered magnetoresistive device have been measured as a function of the direction of external magnetic field. Each layer was fabricated by rf magnetron sputtering method, and especially, the under layer, NiO, was fabricated under the in-situmagnetic field of about 1000Oe. The magnetoresistive devices were designed with the angle of 45degree between the direction of current of the device pattern and the induces magnetic field in the NiO film layer. The output of the devices had a good linearity when the devices were placed on the external magnetic field perpendicular to induced field direction and also 45 degree with the currenr path direction.

  • PDF

Effects of the Hard-Biased Field on the Magnetic and Magnetoresistive Properties of a Crossed Spin-Valve Bead by Computer Simulation

  • S. H. Lim;K. H. Shin;Kim, K. Y.;S. H. Han;Kim, H. J.
    • Journal of Magnetics
    • /
    • v.5 no.1
    • /
    • pp.19-22
    • /
    • 2000
  • The effects of a hard-biased Held on the magnetic and magnetoresistive properties of a crossed spin-valve head are investigated by computer simulation with particular emphasis on the asymmetry of the output signal. The spin-valve considered in this work is NiMn (25 nm)/NiFe (2.5 m)/Cu (3 nm)/NiFe (5.5 m), with a length of 1500 m and a width of 600 nm. A simple model is used where each magnetic layer consists of a single domain, and the magnetoresistance is a function of the angle between the magnetization directions of the two magnetic layers. The ideal crossed spin-valve structure is not realized with the present model and magnetic parameters, but the deviation from ideality is decreased by the hard-biased field. This results in the improvement of the linearity of the output signal with the use of the bias field. The magnetoresistance ratio and magnetoresistive sensitivity, however are reduced. The magnetic properties including the magnetoresistance are found to be strongly affected by magnetostatic interactions, particularly the inter-layer magnetostatic field.

  • PDF

Soft Magnetoresistive Properties of Conetic Thin Film Depending on Ta Buffer Layer (버퍼층 Ta에 의존하는 코네틱 박막의 연자성 자기저항 특성)

  • Choi, Jong-Gu;Hwang, Do-Guwn;Lee, Sang-Suk;Choi, Jin-Hyub;Lee, Ky-Am;Rhee, Jang-Rho
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.6
    • /
    • pp.197-202
    • /
    • 2009
  • The property of soft magnetism for the Corning glass/non-buffer or buffer Ta/Conetic(NiFeCuMo)/Ta prepared by the ion beam deposition sputtering was studied. The effect of crystal property and post annealing treatment depending on the thickness of Conetic thin films was investigated. The coercivities of Conetic thin films with easy and hard direction along to the applying magnetic field during deposition were compared with each other. The coercivity and magnetic susceptibility of Ta(5 nm)/Conetic(50 nm) thin film were 0.12 Oe and 1.2 ${\times}\;10^4$, respectively. From these results, firstly, the Conetic thin film was more soft magnetism thin film than other one such as permalloy NiFe. Secondly, the usage of soft magnetism Conetic thin film for GMR-SV (giant magneoresistance-spin valve) or MTJ (Megnetic Tunnel Junction) structure in a low magnetic field can be possible.

Electrodeposition Characteristics and Magnetic Properties of CoFeNi Thin Film Alloys

  • Song, Jae-Song;Yoon, Do-Young;Han, Choon;Kim, Dae-Heum;Park, Dyuk-Young;Myung, No-Sang
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.1
    • /
    • pp.17-20
    • /
    • 2002
  • Various compositions of CoFeNi alloys have been electrodeposited in chloride bath and in sulfate bath, and evaluated for electrodeposition characteristics and magnetic properties. For electrodeposited CoFeNi thin film alloys, the increase of Fe content in the deposits from sulfate bath was considerably faster than those from chloride bath. The current efficiencies in sulfate bath showed observable decrease from $75\%\;to\;50\%$ while those in chloride bath showed no significant decrease. From the low coercivity of 3 Oe in the minimum and the higher squarenesses of the alloys from sulfate bath than those from chloride bath, the alloy at Co, Fe, and Ni contents of $80wt.\%,\;10wt.\%,\;and\;10wt.\%$ can be considered to be the best CoFeNi alloy in this research for the soft magnetic material.

Comparison of Soft Magnetic Properties of Permalloy and Conetic Thin Films (퍼멀로이와 코네틱 박막의 연자성 특성 비교)

  • Choi, Jong-Gu;Hwang, Do-Guwn;Lee, Sang-Suk;Rhee, Jang-Roh
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.4
    • /
    • pp.142-146
    • /
    • 2009
  • The soft magnetic property for the Corning glass/Ta(5 nm)/[Conetic, Permalloy)/Ta(3 nm) prepared by the ion beam deposition sputtering was investigated. The coercivity and saturation magnetic field of conetic (NiFeCuMo) and permalloy (NiFe) layer with easy and hard direction along to the applying magnetic field during deposition was compared with each other. The surface resistance of conetic film with a thickness of 10 nm was 2 times lower than one of permalloy film. The coercivity and the magnetic susceptibility of conetic film decreased and increased 3 times to one of permalloy film, respectively. These results suggest that a highly sensitive GMR-SV or MTJ using conetic film can be possible to develop the bio-device.

Fabrication of Nano-Structures on NiFe Film by Anodization with Atomic Force Microscope

  • Okada, T.;Uchida, H.;Inoue, M.
    • Journal of Magnetics
    • /
    • v.11 no.3
    • /
    • pp.135-138
    • /
    • 2006
  • We studied local anodization on permalloy $(Ni_{80}Fe_{20})$ thin film with an atomic force microscope (AFM), which was performed by applying a voltage between the permalloy sample and conductive AFM tip. Comparing with anodization on Si (100) substrate, nano-structures on the permalloy thin film was fabricated with low processability.In order to improve the processability on the permalloy thin film, we used dot-fabrication method, thatis, a conductive AFM probe was kept at a position on the film during the anodization process.

EMI (Electromagnetic Interference) Shielding Properties of Barium-Based Ferrite Thin Films Prepared by Spin Spray Method (스핀 스프레이 방식으로 제조된 바륨계 페라이트 박막의 EMI (Electromagnetic Interference) 차폐 특성)

  • Hye Ryeong Oh;Yeon-Ju Park;Woo-Sung Lee;Chan-Sei Yoo;Myong-Jae Yoo;Intae Seo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.2
    • /
    • pp.195-201
    • /
    • 2024
  • The low-temperature deposition of BaNi(2-x)CoxFe16O27 thin films with a Ba hexaferrite structure for electromagnetic shielding was studied. The BaNi(2-x)CoxFe16O27 thin films produced through the spin spray process were suitable for thin film deposition on a flexible substrate because it crystallized well at low temperature below 90℃. The change in shielding characteristics depending on the Co content of the BaNi(2-x)CoxFe16O27 thin film was investigated, and excellent shielding characteristics with S21 of -1 dB were obtained in a wide frequency range of 26~40 GHz when the Co content was 0.4 or more. The purpose of this study is to analyze changes in shielding properties caused by change in Co content in relation to phase changes in BaNi(2-x)CoxFe16O27 and obtain basic data for developing excellent flexible electromagnetic wave shielding materials.

The Magnetic Properties of Co-Ni-Fe-N Soft Magnetic Thin Films

  • Kim, Y. M.;Park, D.;Kim, K. H.;Kim, J.;S. H. Han;Kim, H. J.
    • Journal of Magnetics
    • /
    • v.5 no.4
    • /
    • pp.120-123
    • /
    • 2000
  • Co-Ni-Fe-N thin films were fabricated by a $N_2$ reactive rf magnetron sputtering method. The nitrogen partial pressure ($P_{N2}$) was varied in the range 0~10% . As$P_{N2}$ increases in this range, the saturation magnetization $B_s$ linearly decreases from 19.8 kG to 14 kG and the electrical resistivity ($\rho$) increases from 27 to 155 $\mu\Omegacm$. The coercivity $H_c$ exhibits the minimum value at 4% $P_{N2}$. The magnetic anisotropy fields ($H_k$) are in the range of 20$\sim$50 Oe. High frequency characteristics of $(Co_{22.2}Ni_{27.6}Fe_{50.2})_{100-x}N_x$ films are excellent in the range of 3$\sim$5% of $P_{N2}$. In particular, the effective permeability of the film fabricated at 4% $P_{N2}$ is 800, which is maintained up to 600 MHz. This film also shows Bs of 17.5 kG, $H_c$/ of 1.4 Oe, resistivity of 98$\mu\Omegacm$ and $H_k$ of about 25 Oe. Also, the corrosion resistance of $(Co_{22.2}Ni_{27.6}Fe_{50.2})_{100-x}N_x$ films was imp roved with increasing N concentration.

  • PDF

THE MAGNETIC PROPERTIES OF Co-Ni-Fe-N SOFT MAGNETIC THIN FILMS

  • Kim, Y. M.;Park, D.;Kim, K. H.;Kim, J.;S. H. Han;Kim, H. J.
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2000.09a
    • /
    • pp.492-499
    • /
    • 2000
  • Co-Ni-Fe-N thin films were fabricated by a N$\sub$2/ reactive rf magnetron sputtering method. The nitrogen partial pressure (P$\sub$N2/) was varied in the range of 0∼10%. As P$\sub$N2/ increases in this range, the saturation magnetization (B$\sub$s/) linearly decreases from 19.8 kG to 14 kG and the electrical resistivity ($\rho$) increased from 27 to 155 ${\mu}$$\Omega$cm. The coercivity (H$\sub$c/) exhibits the minimum value at 4% of P$\sub$N2/. The magnetic anisotropy (H$\sub$k/) are in the range of 20∼50 Oe. High frequency characteristics of (Co$\sub$22.2/Ni$\sub$27.6/Fe$\sub$50.2/)$\sub$100-x/N$\sub$x/ films are excellent in the range of 3∼5% of P$\sub$N2/. Especially the effective permeability of the film fabricated at 4% of P$\sub$N2/ is 800, which is maintained up to 600 MHz. This film also shows Bs of 17.5 kG, H$\sub$c/ of 1.4 Oe, resistivity of 98 $\Omega$cm and H$\sub$k/ of about 25 Oe. Also, the corrosion resistance of (Co$\sub$22.2/Ni$\sub$27.6/Fe$\sub$50.2/)$\sub$100-x/N$\sub$x/ were improved with the increase in N concentration.

  • PDF