• Title/Summary/Keyword: Ni-ions

Search Result 514, Processing Time 0.026 seconds

Identification of Atmospheric PM10 Sources and Estimating Their Contributions to the Yongin-Suwon Bordering Area by Using PMF (PMF모델을 이용한 용인.수원 경계지역에서 PM10 오염원의 확인과 상대적 기여도의 추정)

  • Lee, Hyung-Woo;Lee, Tae-Jung;Yang, Sung-Su;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.4
    • /
    • pp.439-454
    • /
    • 2008
  • The purpose of this study was to extensively identify $PM_{10}$ sources and to estimate their contributions to the study area, based on the analysis of the $PM_{10}$ mass concentration and the associated inorganic elements, ions, and total carbon. The contribution of $PM_{10}$ sources was estimated by applying a receptor method because identifying air emission sources were effective way to control the ambient air quality. $PM_{10}$ particles were collected from May to November 2007 in the Yongin-Suwon bordering area. $PM_{10}$ samples were collected on quartz filters by a $PM_{10}$ high-volume air sampler. The inorganic elements (Al, Mn, V, Cr, Fe, Ni, Cu, Zn, Cd, Pb, Si, Ba, Ti and Ag) were analyzed by an ICP-AES after proper pre-treatments of each sample. The ionic components of these $PM_{10}$ samples ($Cl^_$, $NO_3^-$, $SO_4^{2-}$, $Na^+$, $NH_4^+$, $K^+$, $Ca^{2+}$, and $Mg^{2+}$) were analyzed by an IC. The carbon components (OC1, OC2, OC3, OC4, OP, EC1, EC2 and EC3) were also analyzed by DRI/OGC analyzer. Source apportionment of $PM_{10}$ was performed using a positive matrix factorization (PMF) model. After performing PMF modeling, a total of 8 sources were identified and their contribution were estimated. Contributions from each emission source were as follows: 13.8% from oil combustion and industrial related source, 25.4% from soil source, 22.1% from secondary sulfate, 12.3% from secondary nitrate, 17.7% from auto emission including diesel (12.1%) and gasoline (5.6%), 3.1% from waste incineration and 5.6% from Na-rich source. This study provides information on the major sources affecting air quality in the receptor site, and therefore it will help us maintain and manage the ambient air quality in the Yongin-Suwon bordering area by establishing reliable control strategies for the related sources.

Identification of PM10 Chemical Characteristics and Sources and Estimation of their Contributions in a Seoul Metropolitan Subway Station (서울시 지하역사에서 PM10의 화학적 특성과 오염원의 확인 및 기여도 추정)

  • Park, Seul-Ba-Sen-Na;Lee, Tae-Jung;Ko, Hyun-Ki;Bae, Sung-Joon;Kim, Shin-Do;Park, Duckshin;Sohn, Jong-Ryeul;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.1
    • /
    • pp.74-85
    • /
    • 2013
  • Since the underground transportation system is a closed environment, indoor air quality problems may seriously affect many passengers' health. The purpose of this study was to understand $PM_{10}$ characteristics in the underground air environment and further to quantitatively estimate $PM_{10}$ source contributions in a Seoul Metropolitan subway station. The $PM_{10}$ was intensively collected on various filters with $PM_{10}$ aerosol samplers to obtain sufficient samples for its chemical analysis. Sampling was carried out in the M station on the Line-4 from April 21 to 28, July 13 to 21, and October 11 to 19 in the year of 2010 and January 11 to 17 in the year of 2011. The aerosol filter samples were then analyzed for metals, water soluble ions, and carbon components. The 29 chemical species (OC1, OC2, OC3, OC4, CC, PC, EC, Ag, Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Si, Ti, V, Zn, $Cl^-$, $NO_3{^-}$, $SO_4{^{2-}}$, $Na^+$, $NH_4{^+}$, $K^+$, $Mg^{2+}$, $Ca^{2+}$) were analyzed by using ICP-AES, IC, and TOR after proper pretreatments of each sample filter. Based on the chemical information, positive matrix factorization (PMF) model was applied to identify the $PM_{10}$ sources and then six sources such as biomass burning, outdoor, vehicle, soil and road dust, secondary aerosol, ferrous, and brakewear related source were classified. The contributions rate of their sources in tunnel are 4.0%, 5.8%, 1.6%, 17.9%, 13.8% and 56.9% in order.

Molecular cloning, purification, expression, and characterization of β-1, 4-endoglucanase gene (Cel5A) from Eubacterium cellulosolvens sp. isolated from Holstein steers' rumen

  • Park, Tansol;Seo, Seongwon;Shin, Teaksoon;Cho, Byung-Wook;Cho, Seongkeun;Kim, Byeongwoo;Lee, Seyoung;Ha, Jong K.;Seo, Jakyeom
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.4
    • /
    • pp.607-615
    • /
    • 2018
  • Objective: This study was conducted to isolate the cellulolytic microorganism from the rumen of Holstein steers and characterize endoglucanase gene (Cel5A) from the isolated microorganism. Methods: To isolate anaerobic microbes having endoglucanase, rumen fluid was obtained from Holstein steers fed roughage diet. The isolated anaerobic bacteria had 98% similarity with Eubacterium cellulosolvens (E. cellulosolvens) Ce2 (Accession number: AB163733). The Cel5A from isolated E. cellulolsovens sp. was cloned using the published genome sequence and expressed through the Escherichia coli BL21. Results: The maximum activity of recombinant Cel5A (rCel5A) was observed at $50^{\circ}C$ and pH 4.0. The enzyme was constant at the temperature range of $20^{\circ}C$ to $40^{\circ}C$ but also, at the pH range of 3 to 9. The metal ions including $Ca^{2+}$, $K^+$, $Ni^{2+}$,$Mg^{2+}$, and $Fe^{2+}$ increased the endoglucanase activity but the addition of $Mn^{2+}$, $Cu^{2+}$, and $Zn^{2+}$ decreased. The Km and Vmax value of rCel5A were 14.05 mg/mL and $45.66{\mu}mol/min/mg$. Turnover number, Kcat and catalytic efficiency, Kcat/Km values of rCel5A was $96.69(s^{-1})$ and 6.88 (mL/mg/s), respectively. Conclusion: Our results indicated that rCel5A of E. cellulosolvens isolated from Holstein steers had a broad pH range with high stability under various conditions, which might be one of the beneficial characteristics of this enzyme for possible industrial application.

Stress-Governed Expression and Purification of Human Type II Hexokinase in Escherichia coli

  • Jeong, Eun-Ju;Park, Kyoung-Sook;Yi, So-Yeon;Kang, Hyo-Jin;Chung, Sang-J.;Lee, Chang-Soo;Chung, Jin-Woong;Seol, Dai-Wu;Chung, Bong-Hyun;Kim, Moon-Il
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.638-643
    • /
    • 2007
  • The full encoding sequence for human type II hexokinase (HXK II) was cloned into the E. coli expression vector pET 21b and expressed as a C-terminally hexahistidine-tagged protein in the BL2l (DE3) strain. The IPTG-induced HXK II approximately accounted for 17% of the total E. coli proteins, and 81% of HXK $II_{6{\times}His}$ existed in inclusion bodies. To improve the production of soluble recombinant HXK II protein, in the functionally active form, we used low temperature, and the osmotic stress expression method. When expressed at $18^{\circ}C$, about 83% of HXK $II_{6{\times}His}$ existed in the soluble fraction, which amounted to a 4.1-fold yield over that expressed at $37^{\circ}C$. The soluble form of HXK $II_{6{\times}His}$ was also highly produced in the presence of 1M sorbitol under the standard condition $(37^{\circ}C)$, which indicated that temperature downshift and low water potentials were required to improve the yield of active recombinant HXK II protein. The expressed protein was purified by metal chelate affinity chromatography performed in an IDA Excellose column charged with $Ni^{2+}$ ions, resulting in about 40mg recombinant HXK II protein obtained with purity over 89% from 51 of E. coli culture. The identity of HXK $II_{6{\times}His}$ was confirmed by Western blotting analysis. Taken together, using the stress-governed expression described in this study, human active HXK II can be purified in sufficient amounts for biochemical and biomedical studies.

Studies on Antimutagenic Effects and Gene Repair of Enzymatic Browning Reaction Products (효소적 갈변반응 생성물의 돌연변이 억제효과 및 유전자 수복에 관한 연구)

  • Ham, Seung-Shi;Kim, Sung-Wan;Kim, Young-Myung
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.632-639
    • /
    • 1990
  • The biological activities of twelve different kinds of enzymatic browning reaction products(EBRP), which resulted from the reactants four kinds of polyphenols with polyphenol oxidase extracted from Ligularia fischeri, pimpinella brachycarpa and Aster scaber of edible mountain herbs. All of twelve samples did not show any mutagenic effect in the spore rec-assay, Ames mutagenicity test and DNA breaking test. However metal ions such as $Cu^{2+},\;Fe^{2+}$, and $Ni^{2+}$ were increased the DNA breakage in rec-assay. The EBRPs inhibited the mutagenicities induced by $benzo({\alpha})pyrene (B({\alpha})P)$, 3-amino-1,4-dimethyl-5H-pyrido-[4,3-b]indole(Trp-P-1) and 2-aminofluorene(2-AF) in Salmonella/microsome assay system with S-9 mix. In effects of EBRPs on the DNA repair system, the activity of EcoRI was highly inhibited and that of $T_{4}$ DNA ligase was inactivated by addition of EBRPs. The results of transformation ratio of plasmid pGA658 into E. coli HB 101 was significantly decreased by the reaction products of S. brachycarpa polyphenoloxidase (PPO). When UV light was exposed to the mixture of DNA and EBRP before the thanformation, the reaction products from L. fischeri PPO with pyrogallol, catechol and hydroxyhydroquinone stimulated transformation ratio.

  • PDF

Relationship between Selected Metal Concentrations in Korean Raspberry (Rubus coreanus) Plant and Different Chemical Fractions of the Metals in Soil

  • Ahn, Byung-Koo;Lee, Jang-Choon;Han, Soo-Gon;Lee, Jin-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.4
    • /
    • pp.591-596
    • /
    • 2011
  • The applications of chemical fertilizers and various types of organic materials may cause heavy metal accumulation in soil. In this study, we conducted to investigate the relationship between the different chemical forms of heavy metals such as Cr, Cd, Pb, Cu, Ni, and Zn retained in soil and the metal concentrations in Korean raspberry plant. Forty five soil samples were collected from 2 to 6 years old Korean raspberry cultivation fields (RCFs), Gochang, Korea, to determine total, exchangeable (1.0 M $MgCl_2$-extractable), DTPA-extractable metal contents. The leaves and fruits of raspberry plant were sampled at harvest stage. Total metal contents in soils ranged from $0.87mg\;kg^{-1}$ to $66.82mg\;kg^{-1}$. Exchangeable and DTPA-extractable metals ranged between 0.02 and $0.67mg\;kg^{-1}$ and between $0.05mg\;kg^{-1}$ and $7.07mg\;kg^{-1}$, respectively. The metal concentrations in the plant leaf and fruit determined on a dry-basis were between $1.30mg\;kg^{-1}$ and $38.82mg\;kg^{-1}$ and between $0.05mg\;kg^{-1}$ and $21.51mg\;kg^{-1}$, respectively, but Cd and Pb were not detected in the leaf. The total, exchangeable, and DTPA-extractable contents of the metal ions in soil were directly correlated one another, but the contents of different metals in the different fractions were inversely correlated in general. Most of total and DTPA-extractable metals in the soil were directly correlated with the contents of the same metals in the plant, whereas exchangeable metals in the soil were not statistically correlated with the same metals in plants. Thus, we concluded that the metal contents in the raspberry field soils were much lower thanthe levels of Soil Contamination Warning Standard (SCWS), and the plant metal concentrations were also less than the maximum permissible limits. The total and DTPA-extractable metals in the soil were closely related to the metal concentrations in the plant.

Recovery of Nickel from Waste Iron-Nickel Alloy Etchant and Fabrication of Nickel Powder (에칭 폐액으로부터 용매추출과 가수분해를 이용한 니켈분말제조에 관한 연구)

  • Lee, Seokhwan;Chae, Byungman;Lee, Sangwoo;Lee, Seunghwan
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.14-18
    • /
    • 2019
  • In general after the etching process, waste etching solution contains metals. (ex. Nickel (Ni), Chromium (Cr), Zinc (Zn), etc.) In this work, we proposed a recycling process for waste etching solution and refining from waste liquid contained nickel to make nickel metal nano powder. At first, the neutralization agent was experimentally selected through the hydrolysis of impurities such as iron by adjusting the pH. We selected sodium hydroxide solution as a neutralizing agent, and removed impurities such as iron by pH = 4. And then, metal ions (ex. Manganese (Mn) and Zinc (Zn), etc.) remain as impurities were refined by D2EHPA (Di-(2-ethylhexyl) phosphoric acid). The nickel powders were synthesized by liquid phase reduction method with hydrazine ($N_2H_4$) and sodium hydroxide (NaOH). The resulting nickel chloride solution and nickel metal powder has high purity ( > 99%). The purity of nickel chloride solution and nickel nano powders were measured by EDTA (ethylenediaminetetraacetic) titration method with ICP-OES (inductively coupled plasma optical emission spectrometer). FE-SEM (field emission scanning electron microscopy) was used to investigate the morphology, particle size and crystal structure of the nickel metal nano powder. The structural properties of the nickel nano powder were characterized by XRD (X-ray diffraction) and TEM (transmission electron microscopy).

Purification and Characterization of Mitochondrial Mg2+-Independent Sphingomyelinase from Rat Brain

  • Jong Min Choi;Yongwei Piao;Kyong Hoon Ahn;Seok Kyun Kim;Jong Hoon Won;Jae Hong Lee;Ji Min Jang;In Chul Shin;Zhicheng Fu;Sung Yun Jung;Eui Man Jeong;Dae Kyong Kim
    • Molecules and Cells
    • /
    • v.46 no.9
    • /
    • pp.545-557
    • /
    • 2023
  • Sphingomyelinase (SMase) catalyzes ceramide production from sphingomyelin. Ceramides are critical in cellular responses such as apoptosis. They enhance mitochondrial outer membrane permeabilization (MOMP) through self-assembly in the mitochondrial outer membrane to form channels that release cytochrome c from intermembrane space (IMS) into the cytosol, triggering caspase-9 activation. However, the SMase involved in MOMP is yet to be identified. Here, we identified a mitochondrial Mg2+-independent SMase (mt-iSMase) from rat brain, which was purified 6,130-fold using a Percoll gradient, pulled down with biotinylated sphingomyelin, and subjected to Mono Q anion exchange. A single peak of mt-iSMase activity was eluted at a molecular mass of approximately 65 kDa using Superose 6 gel filtration. The purified enzyme showed optimal activity at pH of 6.5 and was inhibited by dithiothreitol and Mg2+, Mn2+, Ni2+, Cu2+, Zn2+, Fe2+, and Fe3+ ions. It was also inhibited by GW4869, which is a non-competitive inhibitor of Mg2+-dependent neutral SMase 2 (encoded by SMPD3), that protects against cytochrome c release-mediated cell death. Subfractionation experiments showed that mt-iSMase localizes in the IMS of the mitochondria, implying that mt-iSMase may play a critical role in generating ceramides for MOMP, cytochrome c release, and apoptosis. These data suggest that the purified enzyme in this study is a novel SMase.

Fate of Heavy Metals in Activated Sludge: Sorption of Heavy Metal ions by Nocardia amarae

  • Kim, Dong-wook
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 1998.10a
    • /
    • pp.2-4
    • /
    • 1998
  • Proliferation of Nocardia amarae cells in activated sludge has often been associated with the generation of nuisance foams. Despite intense research activities in recent years to examine the causes and control of Nocardia foaming in activated sludge, the foaming continued to persist throughout the activated sludge treatment plants in United States. In addition to causing various operational problems to treatment processes, the presence of Nocardia may have secondary effects on the fate of heavy metals that are not well known. For example, for treatment plants facing more stringent metal removal requirements, potential metal removal by Nocardia cells in foaming activated sludge would be a welcome secondary effect. In contrast, with new viosolid disposal regulations in place (Code o( Federal Regulation No. 503), higher concentration of metals in biosolids from foaming activated sludge could create management problems. The goal of this research was to investigate the metal sorption property of Nocardia amarae cells grown in batch reactors and in chemostat reactors. Specific surface area and metal sorption characteristics of N. amarae cells harvested at various growth stages were compared. Three metals examined in this study were copper, cadmium and nickel. Nocardia amarae strain (SRWTP isolate) used in this study was obtained from the University of California at Berkeley. The pure culture was grown in 4L batch reactor containing mineral salt medium with sodium acetate as the sole carbon source. In order to quantify the sorption of heavy metal ions to N amarae cell surfaces, cells from the batch reactor were harvested, washed, and suspended in 30mL centrifuge tubes. Metal sorption studies were conducted at pH 7.0 and ionlc strength of 10-2M. The sorption Isotherm showed that the cells harvested from the stationary and endogenous growth phase exhibited significantly higher metal sorption capacity than the cells from the exponential phase. The sequence of preferential uptake of metals by N. amarae cells was Cu>Cd>Ni. The specific surFace area of Nocardia cells was determined by a dye adsorption method. N.amarae cells growing at ewponential phase had significantly less specific surface area than that of stationary phase, indicating that the lower metal sorption capacity of Nocardia cells growing at exponential phase may be due to the lower specific surface area. The growth conditions of Nocardia cells in continuous culture affect their cell surface properties, thereby governing the adsorption capacity of heavy metal. The comparison of dye sorption isotherms for Nocardia cells growing at various growth rates revealed that the cell surface area increased with increasing sludge age, indicating that the cell surface area is highly dependent on the steady-state growth rate. The highest specific surface area of 199m21g was obtained from N.amarae cell harvested at 0.33 day-1 of growth rate. This result suggests that growth condition not only alters the structure of Nocardia cell wall but also affects the surface area, thus yielding more binding sites of metal removal. After reaching the steady-state condition at dilution rate, metal adsorption isotherms were used to determine the equilibrium distributions of metals between aqueous and Nocardia cell surfaces. The metal sorption capacity of Nocardia biomass harvested from 0.33 day-1 of growth rate was significantly higher than that of cells harvested from 0.5- and 1-day-1 operation, indicatng that N.amarae cells with a lower growth rate have higher sorpion capacity. This result was in close agreement with the trend observed from the batch study. To evaluate the effect of Nocardia cells on the metal binding capacity of activated sludge, specific surface area and metal sorption capacity of the mixture of Nocardia pure cultures and activated sludge biomass were determined by a series of batch experiments. The higher levels of Nocardia cells in the Nocardia-activated sludge samples resulted in the higher specific surface area, explaining the higher metal sorption sites by the mixed luquor samples containing greater amounts on Nocardia cells. The effect of Nocardia cells on the metal sorption capacity of activated sludge was evaluated by spiking an activated sludge sample with various amounts of pre culture Nocardia cells. The results of the Langmuir isotherm model fitted to the metal sorption by various mixtures of Nocardia and activated sludge indicated that the mixture containing higher Nocardia levels had higher metal adsorption capacity than the mixture containing lower Nocardia levels. At Nocardia levels above 100mg/g VSS, the metal sorption capacity of activate sludge increased proportionally with the amount of Noeardia cells present in the mixed liquor, indicating that the presence of Nocardia may increase the viosorption capacity of activated sludge.

  • PDF

Biosorption and Desorption of Heavy Metals using Undaria sp. (미역 폐기물의 중금속 흡탈착 특성)

  • Cho, Ju-Sik;Park, Il-Nam;Heo, Jong-Soo;Lee, Young-Seak
    • Korean Journal of Environmental Agriculture
    • /
    • v.23 no.2
    • /
    • pp.92-98
    • /
    • 2004
  • The adsorption and desorption of Pb, Cd, Co, Zn, Cr, Co, Ni, and Mo on the waste Undaria sp. were studied. Except for Pb. the mono adsorption rate for all heavy metals were lower than that of the heavy metals mixed. However, the adsorption capacity of the heavy metals by 1g of biosorption, in mixed heavy metals increased According to FT-IR analysis of the biosorbent after heavy metal biosorption, the replacement of the functional group by the heavy metals ions could be confirmed and the inverted peaks became larger after heavy metals adsorption. The adsorption equilibrium of heavy metals was reached in about 1 hour. The equilibrium parameters were determined based on Langmuir and Freundlich isotherms. The affinity of metals on the biosorbent decreased in the following order: Pb>Cu>Cr>Cd>Co. The desorption rate decreased in the following sequence: NTA>$H_2SO_4$>HCl>EDTA. The desorption rate of heavy metals by NTA increased with increase in the concentration from 0.1 to 0.3% but the desorption rate became constant beyond 0.3%. Therefore, it represented that desorption rate of heavy metals was suitable under optimized condition ($30^{\circ}C$, pH 2 and 0.3% NTA solution) and was fast with 80% or more the uptake occurring within 10 min of contact time.