• Title/Summary/Keyword: Ni-Ti rotary files

Search Result 62, Processing Time 0.03 seconds

Buckling resistance, bending stiffness, and torsional resistance of various instruments for canal exploration and glide path preparation

  • Kwak, Sang-Won;Ha, Jung-Hong;Lee, WooCheol;Kim, Sung-Kyo;Kim, Hyeon-Cheol
    • Restorative Dentistry and Endodontics
    • /
    • v.39 no.4
    • /
    • pp.270-275
    • /
    • 2014
  • Objectives: This study compared the mechanical properties of various instruments for canal exploration and glide-path preparations. Materials and Methods: The buckling resistance, bending stiffness, ultimate torsional strength, and fracture angle under torsional load were compared for C+ file (CP, Dentsply Maillefer), M access K-file (MA, Dentsply Maillefer), Mani K-file (MN, Mani), and NiTiFlex K-file (NT, Dentsply Maillefer). The files of ISO size #15 and a shaft length of 25 mm were selected. For measuring buckling resistance (n = 10), the files were loaded in the axial direction of the shaft, and the maximum load was measured during the files' deflection. The files (n = 10) were fixed at 3 mm from the tip and then bent $45^{\circ}$ with respect to their long axis, while the bending force was recorded by a load cell. For measuring the torsional properties, the files (n = 10) were also fixed at 3 mm, and clockwise rotations (2 rpm) were applied to the files in a straight state. The torsional load and the distortion angle were recorded until the files succumbed to the torque. Results: The CP was shown to require the highest load to buckle and bend the files, and the NT showed the least. While MA and MN showed similar buckling resistances, MN showed higher bending stiffness than MA. The NT had the lowest bending stiffness and ultimate torsional strength (p < 0.05). Conclusions: The tested instruments showed different mechanical properties depending on the evaluated parameters. CP and NT files were revealed to be the stiffest and the most flexible instruments, respectively.

Evaluation of canal preparation for apical sealing with various Ni-Ti rotary instruments (수 종의 Ni-Ti 회전 기구들을 이용한 치근단 폐쇄 향상을 위한 근관 확대 평가)

  • Shin, Yoo-Seok;Shin, Su-Jung;Song, Min-Ju;Kim, Eui-Seong
    • Restorative Dentistry and Endodontics
    • /
    • v.36 no.4
    • /
    • pp.300-305
    • /
    • 2011
  • Objectives: The aim of this study was to evaluate the various NiTi rotary instruments regarding their ability to provide a circular apical preparation. Materials and Methods: 50 single canal roots were selected, cut at the cementodentinal junction and the coronal 1/3 of the canals was flared using Gates Glidden burs. Samples were randomly divided into 5 experimental groups of 10 each. In group I, GT files, Profile 04 and Quantec #9 and #10 files were used. In Group II Lightspeed was used instead of Quantec. In Group III, Orifice shaper, Profile .06 series and Lightspeed were used. In Group IV, Quantec #9 and #10 files were used instead of Lightspeed. In Group V, the GT file and the Profile .04 series were used to prepare the entire canal length. All tooth samples were cut at 1 mm, 3 mm and 5 mm from the apex and were examined under the microscope. Results: Groups II and III (Lightspeed) showed a more circular preparation in the apical 1mm samples than the groups that used Quantec (Group I & IV) or GT files and Profile .04 series.(Group V)(p < 0.05) There was no significant difference statistically among the apical 3, 5 mm samples. In 5 mm samples, most of the samples showed complete circularity and none of them showed irregular shape. Conclusions: Lightspeed showed circular preparation at apical 1 mm more frequently than other instruments used in this study. However only 35% of samples showed circularity even in the Lightspeed Group which were enlarged 3 ISO size from the initial apical binding file (IAF) size. So it must be considered that enlarging 3 ISO size isn't enough to make round preparation.

EFFECT OF CROSS-SECTIONAL AREA OF 6 NICKEL-TITANIUM ROTARY INSTRUMENTS ON THE FATIGUE FRACTURE UNDER CYCLIC FLEXURAL STRESS: A FRACTOGRAPHIC ANALYSIS (반복 굽힘 스트레스 하에서 전동식 니켈-티타늄 파일의 단면적의 크기가 피로파절에 미치는 영향 : 파절역학 분석)

  • Hwang, Soo-Youn;Oh, So-Ram;Lee, Yoon;Lim, Sang-Min;Kum, Kee-Yeon
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.5
    • /
    • pp.424-429
    • /
    • 2009
  • This study aimed to assess the influence of different cross-sectional area on the cyclic fatigue fracture of Ni-Ti rotary files using a fatigue tester incorporating cyclical axial movement. Six brands of Ni-Ti rotary files (ISO 30 size with. 04 taper) of 10 each were tested: Alpha system (KOMET), HeroShaper (MicroMega), K3 (SybronEndo), Mtwo (VDW), NRT (Mani), and ProFile (Dentsply). A fatigue-tester (Denbotix) was designed to allow cyclic tension and compressive stress on the tip of the instrument. Each file was mounted on a torque controlled motor (Aseptico) using a 1:20 reduction contra-angle and was rotated at 300 rpm with a continuous, 6 mm axial oscillating motion inside an artificial steel canal. The canal had a $60^{\circ}$ angle and a 5 mm radius of curvature. Instrument fracture was visually detected and the time until fracture was recorded by a digital stop watch. The data were analyzed statistically. Fractographic analysis of all fractured surfaces was performed to determine the fracture modes using a scanning electron microscope. Cross-sectional area at 3 mm from the tip of 3 unused Ni-Ti instruments for each group was calculated using Image-Pro Plus (Imagej 1.34n, NIH). Results showed that NRT and ProFile had significantly longer time to fracture compared to the other groups (p < .05). The cross-sectional area was not significantly associated with fatigue resistance. Fractographycally, all fractured surfaces demonstrated a combination of ductile and brittle fracture. In conclusion, there was no significant relationship between fatigue resistance and the cross-sectional area of Ni-Ti instruments under experimental conditions.

Comparison of root canal preparation by three Ni-Ti instruments

  • Shibutani, Takuya;Ozaki, Kazumi;Matsuo, Takashi
    • Proceedings of the KACD Conference
    • /
    • 2003.11a
    • /
    • pp.547-547
    • /
    • 2003
  • The aim of this study was to compare the effects of three Ni-Ti instruments on leaning ability by evaluating the volumetric and morphological changes in the apical 6mm of the root canals before and after preparation, using three-dimensionally reconstructed root canals of extracted human teeth. Forty-five teeth were used in this study. They were opened the chambers and removed the all pulp remnants ultrasonically. Subsequently, the canal wall was coated with silver paste and prepared using ProTaper, ProFile and GT rotary files according to the manufacturers instructions. Before and after root canal preparation, all the specimens were scanned with micro computed tomography and examined the differences in dentine volume removed, canal straightening, the proportion of the unchanged area and canal transportation. Quantitative analysis revealed that instrumentation increased in canal volume ranging between 0.081 and $1.866{\;}\textrm{mm}^3$. On average, the large apical preparation produced by ProTaper demonstrated smaller proportions of unchanged surface areas compared to the two other instruments in small canals. But in large canals like maxillary central incisor, the preparation of ProTaper instruments was not enough. ProTaper instrument was tended to increase more in canal volume as compared with the other two instruments but unchanged area was no significant difference. These results showed that three instruments had similar preparation ability and micro computed tomography in combination with the coated wall of root canal using silver paste is a nondestructive and valuable tool to study root canal geometry and changes after preparations in detail.

  • PDF

THE EFFECT OF SOME CANAL PREPARATION TECHNIQUES ON THE SHAPE OF ROOT CANALS (수종의 근관형성 방법이 근관 형태에 미치는 영향)

  • Lee, Ji-Hyeon;Cho, Yong-Bum
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.2
    • /
    • pp.337-345
    • /
    • 1999
  • The purpose of this study was to compare the shape of root canal after instrumentation with some engine driven NiTi files. Thirty narrow and curved canals(15-35 degree) of mesial canals of extracted human mandibular first molars were divided into three groups. Group 1: After radicular access with Gates Glidden drill, apical shaping using step back method with Flexo file Group 2: After radicular access with Gates Glidden drill, apical shaping with Profile .04 Group 3: Canal shaping with GT file and Profile .04. Using modified Bramante technique, the root was sectioned at 2 mm from apical foramen, height of curvature, 2 mm from canal orifice. Canal centering ratio, amount of transport, amount of dentin removed, shape of canal were measured and statistical analysis is done using SPSS Program V 7.5. The results were as follows: 1. Canal centering ratio of group 3 was the lowest at coronal part, but there was no statistical difference. Centering ratio of group 2 was the lowest at curve part, and there was statistical difference between group 1(P<0.05). Centering ratio of group 2 was the lowest at apical part, but there was no statistic difference. 2. Amount of transport of group 3 was the lowest at coronal part, but there was no statistical difference. Amount of transport of group 2 was the lowest at curve part, and there was statistical difference between group 1(P<0.05). Amount of transport of group 3 was the lowest at apical part, and there was statistical difference between group 1 and group 2, group 1 and group 3(P<0.05). 3. Amount of dentin removed of group 3 was the lowest at coronal part, bur there was no statistical difference. Amount of dentin removed of group 2 was the lowest at curve part, but there was no statistical difference. Amount of dentin removed or group 2 was the lowest at apical part, and there was statistical difference between group 1 and group 2, group 1 and group 3(P<0.05). 4. The shape of the canals after instrumentation varied among the groups. The majority of canals at coronal and curve part for group 1 were round in shape(7 in 10), those at apical part were oval(8 in 10). The majority of canals at coronal part for group 2 were round in shape(7 in 10) and there was no difference in the number of shape at other part. There was no difference in the number of shape at every part for group 3. As above results, NiTi rotary instrumentation showed a trend to remain more centered in the canal than SS file instrumentation. At using NiTi file, coronal shaping with Gates Glidden drill was not statistically different from shaping with GT file. But shaping with GT file showed tapered canals, so it may be said that shaping with GT file is a safe and valuable instrumentation method.

  • PDF

EFFECT OF ROTATIONAL SPEED OF PROTAPERTM ROTARY FILE ON THE CHANCE OF ROOT CANAL CONFIGURATION (ProTaperTM로 근관성형시 회전 속도 변화가 근관형태에 미치는 영향)

  • Seo, Min-Chul;Jeon, Yoon-Jeong;Kang, In-Chol;Kim, Dong-Jun;Hwang, Yun-Chan;Hwang, In-Nam;Oh, Won-Mann
    • Restorative Dentistry and Endodontics
    • /
    • v.31 no.3
    • /
    • pp.179-185
    • /
    • 2006
  • This study was conducted to evaluate canal configuration after shaping by $ProTaper^{TM}$ with various rotational speed in J-shaped simulated resin canals. Forty simulated root canals were divided into 4 groups, and instrumented using by $ProTaper^{TM}$ at the rotational speed of 250, 300, 350 and 400 rpm. Pre-instrumented and post-instrumented images were taken by a scanner and those were superimposed. Outer canal width, inner canal width, total canal width, and amount of transportation from original axis were measured at 1, 2, 3, 4, 5, 6, 7 and 8 mm from apex. Instrumentation time, instrument deformation and fracture were recorded. Data were analyzed by means of one-way ANOVA followed by Scheffe's test. The results were as follows 1. Regardless of rotational speed, at the $1{\sim}2mm$ from the apex, axis of canal was transported to outer side of a curvature, and at 3~6 mm from the apex, to inner side of a curvature. Amounts of transportation from original axis were not sienifcantly different among experimental groups except at 5 and 6 mm from the apex. 2. Instrumentation time of 350 and 400 rpm was significantly less than that of 250 and 300 rpm (p<0.01). In conclusion the rotational speed of $ProTaper^{TM}$ files in the range of $250{\sim}400rpm$ does not affect the change of canal configuration, and high rotational speed reduces the instrumentation time. However appearance of separation and distortion of Ni-Ti rotary files can occur in high rotational speed.

Effect of adaptive movement on durability and working time of twisted file (Adaptive movement가 twisted file의 내구성과 작업 시간에 미치는 영향)

  • Lee, Sang-Ho;Park, So-Ra;Cho, Kyung-Mo;Park, Se-Hee;Kim, Jin-Woo
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.35 no.1
    • /
    • pp.20-26
    • /
    • 2019
  • Purpose: Recently TF-adaptive movement is developed in order to increase the durability of TF files. The purpose of this study was to assess the effects of adaptive movement on durability and performance of twisted files. Materials and Methods: Resin blocks simulating artificial J-shape canals were used for this study. In TFC group, TF-adaptive ML-1 (25/.08 size) files were used to prepare the canals under continuous rotation 500 rpm/4.0 Ncm. In TFA group, TF-adaptive ML-1 (25/.08 size) files were used to prepare the canals under adaptive movement. After preparing each artificial canal, TF files were observed under dental microscope for assessing existence of unwinding, distortion, and fracture. If unwinding of flute was observed, the number of artificial canals until unwinding of flute occurs was recorded. Required time until instruments reach working length and distance of unwinded portion of files from D0 were measured. All test results were conducted by Mann-Whitney U test at a 0.05 level of significance. Results: No Ni-Ti instrument's separation was observed. Number of resin blocks until file unwinding happens and working time was significantly high in TFA group compared to TF group. Distance of distortion from D0 didn't show significant difference between TFA, TF groups. Conclusion: The number of resin blocks prepared until unwinding happens and working time were significantly high in TFA group. The location of unwinding showed no significant difference between 2 groups. Adaptive movement increased the number of canals prepared until unwinding occurs and working time of twisted files.

COMPARISON OF SCREW-IN EFFECT FOR SEVERAL NICKEL-TITANIUM ROTARY INSTRUMENTS IN SIMULATED RESIN ROOT CANAL (모형 레진 근관에서 수종의 전동 니켈-티타늄 파일에 대한 screw-in effect 비교)

  • Ha, Jung-Hong;Jin, Myoung-Uk;Kim, Young-Kyung;Kim, Sung-Kyo
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.4
    • /
    • pp.267-272
    • /
    • 2010
  • Screw-in effect is one of the unintended phenomena that occurs during the root canal preparation with nickel-titanium rotary files. The aim of this study was to compare the screw-in effect among various nickel-titanium rotary file systems. Six different nickel-titanium rotary instruments (ISO 20/.06 taper) were used: $K3^{TM}$ (SybronEndo, Glendora, CA, USA), $M_{two}$ (VDW GmbH, Munchen, Germany), NRT with safe-tip and with active tip (Mani Inc., Shioya-gun, Japan), ProFile$^{(R)}$ (Dentsply-Maillefer, Ballaigues, Switzerland) and ProTaper$^{(R)}$ (Dentsply-Maillefer, Ballaigues, Switzerland). For ProTaper$^{(R)}$, S2 was selected because it has size 20. Root canal instrumentations were done in sixty simulated single-curved resin root canals with a rotational speed of 300 rpm and single pecking motion. A special device was designed to measure the force of screw-in effect. A dynamometer of the device recorded the screw-in force during simulated canal preparation and the recorded data was stored in a computer with designed software (LCV-USE-VS, Lorenz Messtechnik GmbH, Alfdorf, Germany). The data were subjected to one-way ANOVA and Tukey's multiple range test for post-hoc test. P value of less than 0.05 was regarded significant. ProTaper$^{(R)}$ produced significantly more screw-in effects than any other instruments in the study (p < 0.001). $K3^{TM}$ produced significantly more screw-in effects than $M_{two}$, and ProFile$^{(R)}$ (p < 0.001). There was no significant difference among $M_{two}$, NRT, and ProFile$^{(R)}$ (p > 0.05), and between NRT with active tip and NRT with safe one neither (p > 0.05). From the result of the present study, it was concluded, therefore, that there seems significant differences of screw-in effect among the tested nickel-titanium rotary instruments. The radial lands and rake angle of nickel-titanium rotary instrument might be the cause of the difference.

Influence of taper on the screw-in effect of nickel-titanium rotary files in simulated resin root canal (모형 레진근관에서 니켈-티타늄 전동 파일의 경사도가 screw-in effect에 미치는 영향)

  • Sung, Hye-Jin;Ha, Jung-Hong;Kim, Sung-Kyo
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.5
    • /
    • pp.380-386
    • /
    • 2010
  • Objectives: The introduction of nickel-titanium alloy endodontic instruments has greatly simplified shaping the root canal systems. However, these new instruments have several unexpected disadvantages. One of these is tendency to screw into the canal. In this study, the influence of taper on the screw-in effect of the Ni-Ti rotary instrument were evaluated. Materials and Methods: A total of 20 simulated root canals with an S-shaped curvature in clear resin blocks were divided into two groups. ProFile .02, .04, .06 (Dentsply-Maillefer) and GT rotary files .08, .10, .12 (Dentsply) were used in Profile group, and K3 .04, .06, .08, .10, and .12 (SybronEndo, Glendora) were used in K3 group. Files were used with a single pecking motion at a constant speed of 300 rpm. A special device was made to measure the force of screw-in effect. A dynamometer of the device recorded the screwin force during simulated canal preparation and the recorded data was stored in computer with designed software. The data were subjected to one-way ANOVA and Tukey's multiple range test for post-hoc test. p value of less than 0.05 was regarded significant. Results: The more tapered instruments generated more screw-in forces in Profile group (p < 0.05). In K3 group, 0.08, 0.10. and 0.12 tapered instruments showed more screw-in force than 0.04 tapered one, and 0.08 and 0.12 tapered instruments showed more screw-in force than 0.06 tapered one (p < 0.05). Conclusions: The more tapered instruments seems to produce more screw-in force. To avoid this screw-in force during instrumentation, more attention may be needed when using more tapered instruments.

Effects of canal enlargement and irrigation needle depth on the cleaning of the root canal system at 3 mm from the apex (근관확대 및 세척 주사바늘의 근관 내 위치가 치근단 3 mm 부위의 근관 세정에 미치는 영향)

  • Moon, Ho-Jin;Hong, Chan-Ui
    • Restorative Dentistry and Endodontics
    • /
    • v.37 no.1
    • /
    • pp.24-28
    • /
    • 2012
  • Objectives: The aim of this study was to test the hypothesis, that the effectiveness of irrigation in removing smear layer in the apical third of root canal system is dependent on the depth of placement of the irrigation needle into the root canal and the enlargement size of the canal. Materials and Methods: Eighty sound human lower incisors were divided into eight groups according to the enlargement size (#25, #30, #35 and #40) and the needle penetration depth (3 mm from working length, WL-3 mm and 9 mm from working length, WL-9 mm). Each canal was enlarged to working length with Profile.06 Rotary Ni-Ti files and irrigated with 5.25% NaOCl. Then, each canal received a final irrigation with 3 mL of 3% EDTA for 4 min, followed by 5 mL of 5.25% NaOCl at different level (WL-3 mm and WL-9 mm) from working length. Each specimen was prepared for the scanning electron microscope (SEM). Photographs of the 3mm area from the apical constriction of each canal with a magnification of ${\times}250$, ${\times}500$, ${\times}1,000$, ${\times}2,500$ were taken for the final evaluation. Results: Removal of smear layer in WL-3 mm group showed a significantly different effect when the canal was enlarged to larger than #30. There was a significant difference in removing apical smear layer between the needle penetration depth of WL-3 mm and WL-9 mm. Conclusions: Removal of smear layer from the apical portion of root canals was effectively accomplished with apical instrumentation to #35/40 06 taper file and 3 mm needle penetration from the working length.