• 제목/요약/키워드: Ni-Ti alloy

검색결과 391건 처리시간 0.027초

TiNi/Al기 형상기억복합재료의 강도평가를 위한 전문가시스템의 개발 (The Development of Expert System for Strength Evaluation of TiNi Fiber Reinforced Al Matrix Composite)

  • 박영철;이동화;박동성
    • 대한기계학회논문집A
    • /
    • 제28권8호
    • /
    • pp.1099-1108
    • /
    • 2004
  • In this paper, a study on the development of expert system for Al matrix composite with shape memory alloy fiber is performed to evaluate termomechanical behavior and mechanical properties. Expert system is very useful computer-based analysis system designed to make analysis technique and knowledge conveniently available to a lot of fabricable condition. In the developed system, it is possible to predict termomechanical behavior and mechanical properties for other composite with shape memory alloy fiber. The smartness of the shape memory alloy is given due to the shape memory effect of the TiNi fiber which generates compressive residual stress in the matrix material when heated after being prestrained. For finite element analysis, an analytical model is assumed two dimensional axisymmetric model compared of one fiber and the matrix. To evaluate the strength of composite using FEM, the concept of smart composite was simulated on computer Thus, in this paper, the FEA was carried out at two critical temperature conditions; room temperature and high temperature(363k). The finite element analysis result was compared with the test result for the analysis validity.

콘크리트 보강재용 Fe-Mn-Si-Ni-Cr-TiC계 형상기억합금의 내식성 (Corrosion Resistance of Fe-Mn-Si-Ni-Cr-TiC Shape Memory Alloy for Reinforcement of Concrete)

  • 주재훈;이현준;김도형;이욱진;이정훈
    • 한국표면공학회지
    • /
    • 제52권6호
    • /
    • pp.364-370
    • /
    • 2019
  • Fe-Mn-Si-Ni-Cr-TiC alloys have a shape memory property, recovering initial shape by heating. With an aim to improve a durability and stability of building and infrastructure, this Fe-based shape memory alloy (FSMA) can be employed to reinforce concrete structure with creation of compressive residual stress. In this work, corrosion resistance of FSMA was compared with general rebar and S400 carbon steel to evaluate the stability in concrete environment. Potentiodynamic polarization test in de-ionized water, tap-water and 3.5 wt.% NaCl solution with variations of pH was used to compare the corrosion resistance. FSMA shows better corrosion resistance than rebar and S400 in tested solutions. However, Cl-containing solution is critical to significantly reduce the corrosion resistance of FSMA. Therefore, though FSMA can be a promising candidate to replace the rebar and S400 for the reinforcement of concrete structure, serious cautions are required in marine environments.

진공 Hot Press법에 의한 TiNi/6061Al 지적 복합재료의 확산층 형성거동 (Behavior of Diffusion Layer Formation for TiNi/6061Al Smart Composites by Vacuum hot Press)

  • 박광훈;박성기;신순기;이준희
    • 한국재료학회지
    • /
    • 제12권12호
    • /
    • pp.955-961
    • /
    • 2002
  • 2.7vol%TiNi/6061 Al composites with TiNi shape memory alloy as reinforcement were fabricated by vacuum hot press. It was investigated by OM, SEM, EPMA and XRD analysis for the behavior of diffusion layer formation on various heat treatment condition. Thickness of diffusion layer was increased proportionally according to heat treatment time. The layer was formed by the mutual diffusion of TiNi and Al. The diffusion rate from TiNi fiber to Al matrix was faster than that of reverse diffusion path. The more diffused layer was formed in Al matrix. The diffusion at interface layer was consisted of $A1_3$Ti, $Al_3$Ni analyzed by EPMA, XRD results.

Zr0.8Ti0.2Mn0.4V0.6Ni1-xFex 합금 전극의 전기화학적 특성 (Electrochemical Properties of Zr0.8Ti0.2Mn0.4V0.6Ni1-xFex Alloy Electrodes)

  • 송명엽;권익현;이동섭
    • 한국수소및신에너지학회논문집
    • /
    • 제13권3호
    • /
    • pp.181-189
    • /
    • 2002
  • A series of multicomponent $Zr_{0.8}Ti_{0.2}Mn_{0.4}V_{0.6}Ni_{1-x}Fe_{x}$ (x=0.00, 0.08, 0.15, 0.22, and 0.30) alloys are prepared and their oystal structure and P-C-T curves are examined. The electrochemical properties of these allqys such as activation conditions, discharge capacity, cycling performance are also investigated. $Zr_{0.8}Ti_{0.2}Mn_{0.4}V_{0.6}Ni_{1-x}Fe_{x}$ (x=0.00, 0.08, 0.15, 0.22 and 0.30) have the C14 Laves phase hexagonal structure. The electrode was activated by the hot-charging treatment. The best activation conditions were the current density 120 mA/g and the hot-charging time 12h at $80^{\circ}C$ in the case of the alloy with x=0.00. The discharge capacity increased rapidly until the fourth cycle and then decreased. The discharge capacity increased again from the 13th cycle, arriving at 234 mAh/g at the 50th cycle. The discharge capacily just after activation decreases with the increase in the amount of the substituted Fe but the cycling performance is improved. The discharge capacity after activation of the alloy with x=0.00 is 157 mAh/g at the current density 120 mA/g. $Zr_{0.8}Ti_{0.2}Mn_{0.4}V_{0.6}Ni_{0.85}Fe_{0.15}$ is a good composition with a medium quantity of discharge capacities and a good cycling performance. The ICP analysis of the electrolyte for these electrodes after 50 charge-discharge cycles shows that the concentrations of V and Zr are relatively high. Another series of multicomponent $Zr_{0.8}Ti_{0.2}Mn_{0.4}V_{0.6}Ni_{0.85}M_{0.15}$ (M = Fe, Co, Cu, Mo and Al) alloys are prepared. They also have the C14 Laves phase hexagonal structure. The alloys with M = Co and Fe have relatively larger hydrogen storage capacities. The discharge capacities just after activation are relatively large in the case of the alloys with M = Al and Cu. They are 212 and 170 mAh/g, respectivety, at the current density 120mA/g. The $Zr_{0.8}Ti_{0.2}Mn_{0.4}V_{0.6}Ni_{0.85}Co_{0.15}$ alloy is the best one with a relatively large discharge capacity and a good cycling performance.

시스틴으로 화학흡착된 금 코팅 니티놀 표면에 앙쪽성 이온 폴리에틸렌글리콜의 그래프트 및 특성 평가 (Grafting and Characterization of Zwitter Ionic Poly(ethylene glycol) on Gold-Coated Nitinol Surface Chemisorbed with L-Cysteine)

  • 신홍섭;박귀덕;김재진;김지흥;한동근
    • 폴리머
    • /
    • 제33권1호
    • /
    • pp.84-90
    • /
    • 2009
  • 니티놀(Nitinol) 합금(TiNi)은 혈관 스텐트로서 널리 사용되고 있다. 본 연구에서는 니티놀 합금의 혈액적 합성을 개선시키기 위해서 화학적인 표면개질을 행하였다. 먼저 니티놀의 표면을 금으로 코팅한 다음 시스턴(L-cysteine, C/N)을 화학흡착한 후 신규 합성한 양쪽성 이온 폴리에틸렌글리콜(PEG) (PEG-$N^+-SO_3{^-}$)을 그래프트 시켜서 TiNi-C/N-PEG-N-S를 제조하였다. 양쪽성 이온 PEG가 그래프트된 니티놀의 표면은 ATR-FTIR, ESCA 및 SEM을 통해서 확인하였고 친수성 표면은 물 접촉각의 감소를 통해서 입증하였다. 또한, 단백질 흡착 및 혈소판 점착과 혈액응고시간 측정과 같은 혈액적합성 평가 결과로부터 미처리 니티놀 합금에 비해서 표면개질된 니티놀 합금이 상대적으로 훨씬 우수한 혈액적합성을 나타내었다. 이는 그래프트된 친수성 PEG와 항응혈성 양쪽성 이온의 상승효과에 의해서 혈액적합성을 대폭 개선시킨 것으로 사료된다.

Pd 첨가가 금속수소화물 전극 특성에 미치는 영향 (Effects of Pd Addition on Electrode properties of Metal Hydride)

  • 최전;이경구
    • 한국수소및신에너지학회논문집
    • /
    • 제10권2호
    • /
    • pp.141-149
    • /
    • 1999
  • 현재 수소저장 합금을 이용하여 2차전지의 음극으로 개발되고 있는 $AB_5$ type의 $(LM)Ni_{4.49}Co_{0.1}Mn_{0.205}Al_{0.205}$ 조성의 수소저장합금과 $AB_2$ type의 $Ti_{0.6}Zr_{0.4}V_{0.6}Ni_{1.4}$ 조성의 수소저장합금에 Pd를 0, 0.5, 1, 2 wt% 첨가한 조성을 진공 중에서 arc 용해를 하였다. 용해된 합금의 조직과 결정구조를 SEM, XRD로 조사하였다. Pd 가 첨가되었음에도 조직이나 결정구조의 변화는 보이지 않았다. 미세한 구리분말을 합금분말 대비 3:1로 첨가하여 pellet형태의 전극을 제조하여 전극특성을 조사한 결과 Pd 첨가에 따른 초기 활성화와 급속 충방전 특성은 크게 변하지 않았다. 그러나 싸이클 수명에 있어서는 Pd를 첨가한 전극들이 Pd를 첨가하지 않는 전극에 비해 우수하였다. $AB_5$ type 조성의 합금에서는 Pd를 2wt% 첨가한 전극, 그리고 $AB_2$ type 조성의 합금에서는 Pd를 0.5wt% 첨가한 전극에서 싸이클 특성이 가장 우수하게 나타났다.

  • PDF

Cu-Ni-Si-P 합금의 기계적 및 전기적 성질에 미치는 첨가원소의 영향 (The Influence of Alloying Elements Addition on the Electrical and Mechanical Properties of Cu-Ni-Si-P Alloy)

  • 김승호;염영진;박동환
    • 열처리공학회지
    • /
    • 제27권1호
    • /
    • pp.1-9
    • /
    • 2014
  • For connector material applications, the influence alloying elements of Mn, Cr, Fe, and Ti and cold rolling reduction on the mechanical property, electrical conductivity and bendiability of Cu-Ni-Si-P alloy was investigated. The hot rolled plates were solution treated at $980^{\circ}C$ for 1.5 h, quenched into water, cold rolled by 10% and 30% reduction in thickness, and then aged at $440{\sim}500^{\circ}C$ for 3, 4, 5 times. respectively. Cu-Ni-Si-P-x alloys cold rolled by 10 reduction before heat treatment have a good bendability compare to cold rolled by 30 reduction. Cu-3.4Ni-0.8Si-0.03P-0.1Ti shows the peak strength value of 759 MPa, an electrical conductivity of 39%IACS, an elongation of 10% and a hardness of 256 Hv aged at $440^{\circ}C$ for 6 hrs. Thus it is suitable for lead frame and connector.

Nanocrystallization of Cu-Based Bulk Glassy Alloys upon Annealing

  • Pengjun, Cao;Dong, Jiling;Haidong, Wu;Peigeng, Fan;Anruo, Zhou
    • Applied Microscopy
    • /
    • 제46권1호
    • /
    • pp.32-36
    • /
    • 2016
  • The Cu-based bulk glassy alloys in Cu-Zr-Ti-Ni systems were prepared by means of copper mold casting. The Cu-based bulk glassy alloys samples were tested by X-ray diffractomer (XRD), differential scanning calorimeter, scanning electron microscopy (SEM), Instron testing machine and Vickers hardness instruments. The result indicated that the prepared Cu-Zr-Ti-Ni alloys were bulk glassy alloys. The temperature interval of supercooled liquid region (${\Delta}T_x$) was about 45.48 to 70.98 K for the Cu-Zr-Ti-Ni alloy. The Vickers hardness was up to 565 HV for the $Cu_{50}Zr_{25}Ti_{15}Ni_{10}$ bulk glassy alloy. The $Cu_{50}Zr_{25}Ti_{15}Ni_{10}$ bulk glassy alloys were annealed in order to obtain nanocrystals. The results showed that the Vickers hardness was raise up to 630 HV from 565 HV. As shown in XRD results, the amorphous alloys changed to nanocrystals, which were $Cu_8Zr_3$, $Cu_3Ti_2$ and CuZr, improved the hardness. The SEM analysis showed that the compression fractured morphology of amorphous alloys was brittle fracture, and the fracture morphology after annealing was ductile fracture. This proved that annealing of amorphous to nanocrystals can improve the plasticity and toughness of amorphous alloys.

생체주입용 Ni-Ti 합금의 시효특성(I) (Characteristics of Aging of Ni-Ti Alloy Used for Implant Fabrications(I))

  • 조형준;이준희;박기룡
    • 대한의용생체공학회:의공학회지
    • /
    • 제10권3호
    • /
    • pp.261-268
    • /
    • 1989
  • The characteristics of aging of near-equiatomic Ni-Ti alloy has been studied by the three point bend test and the measurement of Differential Scanning Calorimetry(DSC). The DSC is used to measure precise transformation temperatures and the amount of thermal energy required for the corresponding phase transformation. The effort of hardness on aging treatment in saline solution of $37^{\circ}C$ was higher for the annealed than solution treated specimens. As the testing temperature inc- rease from under $M_f$ to above $A_f$ temperature, the elastic stiffness increased. Almost full recovery can be achieved after bending below Belo outer fiber strain. Total bend recovery decreased gradually as aging time and bend angle is increased.

  • PDF