Browse > Article
http://dx.doi.org/10.5695/JKISE.2019.52.6.364

Corrosion Resistance of Fe-Mn-Si-Ni-Cr-TiC Shape Memory Alloy for Reinforcement of Concrete  

Joo, Jaehoon (Department of Metallurgical Engineering, Pukyong National University)
Lee, Hyunjoon (Department of Metallurgical Engineering, Pukyong National University)
Kim, Dohyoung (Korea Institute of Industrial Technology)
Lee, Wookjin (Korea Institute of Industrial Technology)
Lee, Junghoon (Department of Metallurgical Engineering, Pukyong National University)
Publication Information
Journal of the Korean institute of surface engineering / v.52, no.6, 2019 , pp. 364-370 More about this Journal
Abstract
Fe-Mn-Si-Ni-Cr-TiC alloys have a shape memory property, recovering initial shape by heating. With an aim to improve a durability and stability of building and infrastructure, this Fe-based shape memory alloy (FSMA) can be employed to reinforce concrete structure with creation of compressive residual stress. In this work, corrosion resistance of FSMA was compared with general rebar and S400 carbon steel to evaluate the stability in concrete environment. Potentiodynamic polarization test in de-ionized water, tap-water and 3.5 wt.% NaCl solution with variations of pH was used to compare the corrosion resistance. FSMA shows better corrosion resistance than rebar and S400 in tested solutions. However, Cl-containing solution is critical to significantly reduce the corrosion resistance of FSMA. Therefore, though FSMA can be a promising candidate to replace the rebar and S400 for the reinforcement of concrete structure, serious cautions are required in marine environments.
Keywords
Shape Memory Alloy; Concrete; Corrosion; Ferrous Alloy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 E. Choi, Y.-S. Chung, J.-H. Choi, H.-T. Kim, H. Lee, Smart Materials and Structures 19 (2010) 035024.   DOI
2 A.K. Maji, I. Negret, Journal of engineering mechanics 124 (1998) 1121-1128.   DOI
3 C. Czaderski, B. Hahnebach, M. Motavalli, Construction and Building Materials 20 (2006) 824-833.   DOI
4 W. Lee, B. Weber, G. Feltrin, C. Czaderski, M. Motavalli, C. Leinenbach, Smart Materials and Structures 22 (2013) 125037.   DOI
5 W. Lee, B. Weber, C. Leinenbach, Construction and Building Materials 95 (2015) 600-610.   DOI
6 A. Arabi-Hashemi, W. Lee, C. Leinenbach, Materials & Design 139 (2018) 258-268.   DOI
7 D.C. Lagoudas, Shape memory alloys: modeling and engineering applications, Springer 2008.
8 K. Otsuka, C.M. Wayman, Shape memory materials, Cambridge university press 1999.
9 J.M. Jani, M. Leary, A. Subic, M.A. Gibson, Materials & Design (1980-2015) 56 (2014) 1078-1113.   DOI
10 G.B. Kauffman, I. Mayo, The chemical educator 2 (1997) 1-21.
11 N. Stanford, D.P. Dunne, Journal of materials science 41 (2006) 4883-4891.   DOI
12 Z. Dong, U.E. Klotz, C. Leinenbach, A. Bergamini, C. Czaderski, M. Motavalli, Advanced engineering materials 11 (2009) 40-44.   DOI
13 W. Lee, B. Weber, G. Feltrin, C. Czaderski, M. Motavalli, C. Leinenbach, Materials Science and Engineering: A 581 (2013) 1-7.   DOI
14 C. Leinenbach, H. Kramer, C. Bernhard, D. Eifler, Advanced Engineering Materials 14 (2012) 62-67.   DOI
15 T. Maruyama, H. Kubo, Ferrous (Fe-based) shape memory alloys (SMAs): properties, processing and applications, Shape Memory and Superelastic Alloys, Elsevier 2011, pp. 141-159.
16 A. Baruj, T. Kikuchi, S. Kajiwara, N. Shinya, Materials Science and Engineering: A 378 (2004) 333-336.   DOI
17 D. Bu, H. Peng, Y. Wen, N. Li, Materials & Design 32 (2011) 2969-2973.   DOI