• Title/Summary/Keyword: Ni segregation

Search Result 59, Processing Time 0.027 seconds

Ag and Cu Precipitation in Multi-Layer Chip Inductors Prepared with V2O5 Doped NiCuZn Ferrites (V2O5 도핑된 NiCuZn 페라이트로 제조된 칩인덕터에서의 Ag/cu 석출)

  • Je, Hae-June;Kim, Byung-Kook
    • Korean Journal of Materials Research
    • /
    • v.13 no.8
    • /
    • pp.503-508
    • /
    • 2003
  • The purpose of this study is to investigate the effect of $V_2$$O_{5}$ addition on the Ag and Cu precipitation in the NiCuZn ferrite layers of 7.7${\times}$4.5${\times}$1.0 mm sized multi-layer chip inductors prepared by the screen printing method using 0∼0.5 wt% $V_2$$O_{5}$ -doped ferrite pastes. With increasing the $V_2$$O_{5}$ content and sintering temperature, Ag and Cu oxide coprecipitated more and more at the polished surface of ferrite layers during re-annealing at $840^{\circ}C$. It was thought that during the sintering process, V dissolved in the NiCuZn ferrite lattice and the Ag-Cu liquid phase of low melting point was formed in the ferrite layers due to the Cu segregation from the ferrite lattice and Ag diffusion from the internal electrode. During re-annealing at $840^{\circ}C$, the Ag-Cu liquid phase came out the polished surface of ferrite layers, and was decomposed into the isolated Ag particles and the Cu oxide phase during the cooling process.

A Study on Specific Contact Resistance Reduction of Ni Germanide/P-type Ge Using Terbium Interlayer (Terbium 중간층 적용을 통한 Ni Germanide/P-type Ge의 비접촉저항 감소 연구)

  • Shin, Geon-Ho;Li, Meng;Lee, Jeongchan;Song, Hyeong-Sub;Kim, So-Yeong;Lee, Ga-Won;Oh, Jungwoo;Lee, Hi-Deok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.1
    • /
    • pp.6-10
    • /
    • 2018
  • Ni germanide (NiGe) is a promising alloy material with small contact resistance at the source/drain (S/D) of Ge MOSFETs. However, it is necessary to reduce the specific contact resistance between NiGe and the doped Ge S/D region in high-performance MOSFETs. In this study, a novel method is proposed to reduce the specific contact resistance between NiGe and p-type Ge (p-Ge) using a Tb interlayer. The specific contact resistance between NiGe and p-Ge was successfully decreased with the introduction of the Tb interlayer. To investigate the mechanism behind the reduction in the specific contact resistance, the elemental distribution and crystalline structure of NiGe were analyzed using secondary ion mass spectroscopy and X-ray diffraction. It is likely that the reduction in specific contact resistance was caused by an increase in the concentration of boron in the space between NiGe and p-Ge due to the influence of the Tb interlayer.

Effect of the Alloying Elements in Ag-Cu-Zr-X Brazing Alloy on the Microstructure and the Bond Strength of $Al_2O_3$/Ni-Cr Steel Brazed Joint (알루미나/니켈크롬강 접합체의 미세조직 및 접합강도에 미치는 Ag-Cu-Zr-X 브레이징 합금성분의 영향)

  • Kim, Jong-Heon;Yoo, Yeon-Chul
    • Transactions of Materials Processing
    • /
    • v.7 no.5
    • /
    • pp.465-473
    • /
    • 1998
  • The effect of alloying elements of Ag-Cu-Zr-X brazing alloy on the microstructure and the bond strength of $Al_2O_3/Ni-Cr$ brazed steel joint was investigated. The reaction layer, $ZrO_2$ (a=5.146 ${\AA}$ , b=5.213 ${\AA}$ , c=5.311 ${\AA}$ )was formed at the interface of $Al_2O_3/Ni-Cr$ steel joint by the redox reaction between alumina and Zr. The addition of An and Al to the Ag-Cu-Zr brazing alloy gave rise to changes in the thickness of the reaction product layer and the morphology of the brazement. Sn caused the segregation of Zr was decreased b Al the $ZrO_2$ layer formed at the Ag-Cu-Zr-Al alloy was thinner than that of $ZrO_2$ formed at the Ag-Cu-Zr-An alloy. The fracture shear strength was strongly dependent on the microstructure of the brazement. Brazing with Ag-Cu-Zr-Sn alloy resulted in a better bond strength than with Ag-Cu-Zr or Ag-Cu-Zr-Al alloy.

  • PDF

The Influence of Vanadium Addition on Fracture Behavior and Martensite Substructure in a Ni-36.5at.%Al Alloy (Ni-36.5at.%Al 합금에서 V 첨가가 파괴거동 및 마르텐사이트 내부조직에 미치는 영향)

  • Kim, Young Do;Choi, Ju;Wayman, C. Marvin
    • Analytical Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.203-211
    • /
    • 1992
  • Fracture behavior and martensite substructure of Ni-36.5at.%Al alloy were investigated with the addition of vanadium which is known as scavenging element of grain boundary. The fracture surfaces were examined by scanning electron microscopy and the EDX spectrometer was applied for composition analysis of fracture surfaces. The substructure of martensite was studied by transmission electron microscopy. By addition of vanadium, fracture surfaces show mixed modes of intergranular and transgranular fracture and more Al content is found on the grain boundaries. For Ni-36.5at.%Al alloy, the planar faults observed in the martensite plates are the internal twins. By increasing the vanadium content, the modulated structure with stacking faults and dislocations dominates while the twinned martensite disappears. The stacking fault is determined to be extrinsic due to the substitution of V for Al. It is concluded that the segregation of sulfur on the high-energy state stacking fault area suppresses the intergranular fracture.

  • PDF

Evolution of Interfacial Microstructure in Alumina and Ag-Cu-Zr-Sn Brazing Alloy (알루미나/Ag-Cu-Zr-Sn 브레이징 합금계면의 미세조직)

  • Kim, Jong-Heon;Yoo, Yeon-Chul
    • Transactions of Materials Processing
    • /
    • v.7 no.5
    • /
    • pp.481-488
    • /
    • 1998
  • The active metal brazing was applied to bond Alumina and Ni-Cr steel by Ag-Cu-Zr-Sn alloy and the interfacial microstructure and reaction mechanism were investigated. Polycrystalline monoclinic $ZrO_2$ with a very fine grain of 100-150 nm formed at the alumina grain boundary contacted with Zr segregation layer at the interface. The $ZrO_2$ layer containing the inclusions and cracks were developed at the boundary of inclusion/$ZrO_2$ due to the difference in specific volume. The development of $ZrO_2$ at the interface was successfully explained by the preferential penetration of $ZrO_2$ at the interface was successfully explained by the preferential penetration of Zr atoms a higher concentration of oxygen and a high diffusion rate of Al ions into molten brazing alloy.

  • PDF

Investigation of γ/γ' Growth by Macro Segregation in the Ni-Base Single Crystal Superalloy, CMSX-10 (CMSX-10 단결정 초내열합금에서 거시편석에 따른 γ/γ' 응고조직 형성)

  • Yoon, Hyeyoung;Sung, Changhoon;Shin, Jongho;Han, Seong Zeon;Lee, Jehyun
    • Korean Journal of Materials Research
    • /
    • v.25 no.9
    • /
    • pp.435-441
    • /
    • 2015
  • The ${\gamma}/{\gamma}^{\prime}$ two-phases, commonly known as a eutectic structure, are observed in the ${\gamma}$ interdendritic region of a Ni-base superalloy. However, the growth behavior of the ${\gamma}/{\gamma}^{\prime}$ two-phases, whether it is of eutectic or peritectic nature, has not been decidedly established. Directional solidifications were, thus, performed with the planar interface at a low growth rate of $0.5{\mu}m/s$ in order to promote macro segregation. Directional solidification started with the ${\gamma}$ planar interface and the ${\gamma}^{\prime}$ phase nucleated on the ${\gamma}$ planar interface at the solidification fraction of 0.75. The ${\gamma}/{\gamma}^{\prime}$ two-phases showed the ${\gamma}^{\prime}$ rod structure as major phase and the ${\gamma}$ minor phase between ${\gamma}^{\prime}$ rods, and the volume fraction of the ${\gamma}$ phase changed continuously with an increasing solidification fraction. The two-phase ${\gamma}/{\gamma}^{\prime}$ is seen as the coupled peritectic.

Influences of the Irradiation of Intense Pulsed ion Beam (IPIB) on the Surface of Ni$_3$Al Base Alloy IC6

  • Le, X.Y.;Yan, S.;Zhao, W.J.;Han, B.H.;Wang, Y.G.;Xue, J.M.;Zhang, H.T.
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.6 no.2
    • /
    • pp.92-96
    • /
    • 2002
  • In this paper, we treated the Ni$_3$Al based alloy samples with intense pulsed ion beams (IPIB) at the beam parameters of 250KV acceleration voltage, 100 - 200 A/cm$^2$ current density and 60 u pulse duration. We simulated the thermal-mechanical process near the surface of Ni$_3$Al based alloy with our STEIPIB codes. The surface morphology and the cross-section microstructures of samples were observed with SEM, the composition of the sample surface layer was determined by X-ray Energy Dispersive Spectrometry (XEDS) and the microstructure on the surface was observed by Transmission Electron Microscope (TEM). The results show that heating rate increases with the current density of IPIB and cooling rate reached highest value less than 150 A/cm$^2$. The irradiation of IPIB induced the segregation of Mo and adequate beam parameter can improve anti-oxidation properly of IC6 alloy. Some craters come from extraneous debris and liquid droplets, and some maybe due to the melting of the intersection region of interphase. Increasing the pulse number enlarges average size of craters and decreases number density of craters.

  • PDF

Synthesis of Few-layer Graphene Film on a Ni Substrate by Using Filtered Vacuum Arc Source Method

  • Kim, Chang-Su;Seo, Ji-Hun;Gang, Jae-Uk;Kim, Do-Geun;Kim, Jong-Guk;Lee, Hyeong-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.157-157
    • /
    • 2011
  • Graphene has generated significant interest in the recent years as a functional material for electronics, sensing, and energy applications due to its unique electrical, optical, and mechanical properties. Much of the considerable interest in graphene stems from results obtained for samples mechanically exfoliated from graphite. Practical applications, however, require reliable and well-controlled methods for fabrication of large area graphene films. Recently high quality graphene layers were fabricated using chemical vapor deposition (CVD) on nickel and copper with methane as the source of the carbon atoms. Here, we report a simple and efficient method to synthesize graphene layers using solid carbon source. Few-layer graphene films are grown using filtered vacuum arc source (FVAS) technique by evaporation of carbon atom on Ni catalytic metal and subsequent annealing of the samples at 800$^{\circ}$C. In our system, carbon atoms diffuse into the Ni metal layer at elevated temperatures followed by their segregation as graphene on the free surface during the cooling down step as the solubility of carbon in the metal decrease. For a given annealing condition and cooling rate, the number of graphene layers is easily controlled by changing the thickness of the initially evaporated amorphous carbon film. Based on the Raman analysis, the quality of graphene is comparable to other synthesis methods found in the literature, such as CVD and chemical methods.

  • PDF

Interfacial reaction and Fermi level movements of p-type GaN covered by thin Pd/Ni and Ni/Pd films

  • 김종호;김종훈;강희재;김차연;임철준;서재명
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.115-115
    • /
    • 1999
  • GaN는 직접천이형 wide band gap(3.4eV) 반도체로서 청색/자외선 발광소자 및 고출력 전자장비등에의 응용성 때문에 폭넓게 연구되고 있다. 이러한 넓은 분야의 응용을 위해서는 열 적으로 안정된 Ohmic contact을 반드시 실현되어야 한다. n-type GaN의 경우에는 GaN계면에서의 N vacancy가 n-type carrier로 작용하기 때문에 Ti, Al, 같은 금속을 접합하여 nitride를 형성함에 의해서 낮은 접촉저항을 갖는 Ohmic contact을 하기가 쉽다. 그러나 p-type의 경우에는 일 함수가 크고 n-type와 다르게 nitride가 형성되지 않는 금속이 Ohmic contact을 할 가능성이 많다. 시료는 HF(HF:H2O=1:1)에서 10분간 초음파 세척을 한 후 깨끗한 물에 충분히 헹구었다. 그런 후에 고순도 Ar 가스로 건조시켰다. Pd와 Ni은 열적 증착법(thermal evaporation)을 사용하여 p-GaN에 상온에서 증착하였다. 현 연구에서는 열처리에 의한 Pd의 clustering을 줄이기 위해서 wetting이 좋은 Ni을 Pd 증착 전과 후에 삽입하였으며, monchromatic XPS(x-ray photoelectron spectroscopy) 와 SAM(scanning Auger microscopy)을 사용하여 열처리 전과 40$0^{\circ}C$, 52$0^{\circ}C$ 그리고 695$0^{\circ}C$에서 3분간 열처리 후의 온도에 따른 morphology 변화, 계면반응(interfacial reaction) 및 벤드 휨(band bending)을 비교 연구하였다. Nls core level peak를 사용한 band bending에서 Schottky barrier height는 Pd/Ni bi-layer 접합시 2.1eV를, Ni/Pd bi-layer의 경우에 2.01eV를 얻었으며, 이는 Pd와 Ni의 이상적인 Schottky barrier height 값 2.38eV, 2.35eV와 비교해 볼 때 매우 유사한 값임을 알 수 있다. 시료를 후열처리함에 의해 52$0^{\circ}C$까지는 barrier height는 큰 변화가 없으나, $650^{\circ}C$에서 3분 열처리 후에 0.36eV, 0.28eV 만큼 band가 더 ?을 알 수 있었다. Pd/Ni 및 Ni/Pd 접합시 $650^{\circ}C$까지 후 열 처리 과정에서 계면에서 matallic Ga은 온도에 비례하여 많은 양이 형성되어 표면으로 편석(segregation)되어지나, In-situ SAM을 이용한 depth profile을 통해서 Ni/Pd, Pd/Ni는 증착시 uniform하게 성장함을 알 수 있었으며, 후열처리 함에 의해서 점차적으로 morphology 의 변화가 일어나기 시작함을 볼 수 있었다. 이는 $650^{\circ}C$에서 열처리 한후의 ex-situ AFM을 통해서 재확인 할 수 있었다. 이상의 결과로부터 GaN에 Pd를 접합 시 심한 clustering이 형성되어 Ohoic contact에 문제가 있으나 Pd/Ni 혹은 Ni/Pd bi-layer를 사용함에 의해서 clustering의 크기를 줄일 수 있었다. Clustering의 크기는 Ni/Pd bi-layer의 경우가 작았으며, $650^{\circ}C$ 열처리 후에 barrier height는 Pd/Ni bi-layer의 경우에도 Ni의 영향을 받음을 알 수 있었다.

  • PDF

Effects of Microstructural Change in Joint Interface on Mechanical Properties of Si3N4/S.S316 joint with Ni Buffer layer (Ni buffer layer를 사용한 Si3N4/S.S316 접합체에서 접합계면의 미세구조 변화가 접합체의 기계적 특성에 미치는 영향)

  • 장희석;박상환;권혁보;최성철
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.4
    • /
    • pp.381-387
    • /
    • 2000
  • Si3N4/stainless steel 316 joints with Ni buffer layer were fabricated by direct active brazing method (DIB) using Ag-Cu-Ti brazing alloy only and double brazing method (DOB) using Ag-Cu brazing alloy with Si3N4 pretreated with Ag-Cu-Ti brazing alloy. For the joint brazed by DIB method, Ti was segregated at the Si3N4/brazing alloy interface, but was not enough to form a stable joint interface. In addition, large amounts of Ni-Ti inter-metallic compounds were formed in tehbrazing alloy near the joint interface, which could deplete the contents of Ti involved in the interfacial reaction. However, for the joint brazed by DOB method, segregation of Ti at the joint interface were enough to enhance the formation of stable interfacial reaction products such as TiN and Ti-Si-Ni-N-(Cu) multicompounds, which restricted the formation of Ni-Tio inter-metallic compounds in the brazing alloy during brazing with Ni buffer layer. Fracture strength of Si3N4/S.S 316 joints with Ni buffer layer was much improved by using DOB method rather than DIB method. It could be deduced that the differences of fracture strength of the joint with Ni buffer layer depending on brazing process adapted were directly affected by the formation of stable joint interface and the change in microstructure of the brazing alloy near the joint interface. It was found that fracture strength of Si3N4/S.S 316 joints with Ni buffer layer was gradually reduced as the thickness of interface. It was found that fracture strength of Si3N4/S.S 316 joints with Ni buffer layer was gradually reduced as the thickness of Ni buffer layer in the joint was increased from 0.1 mm to 10 mm. It seems to due to the increased residual stress in the joint as the thickness of Ni buffer layer is increased. The maximum fracture strength of Si3N4/S.S 316 joints with Ni buffer layer was 386 MPa, and the fracture of joint was originated at Si3N4/brazing alloy joint interface and propagated into Si3N4 matrix.

  • PDF