• 제목/요약/키워드: Ni oxides

검색결과 234건 처리시간 0.326초

플라즈마 용사 및 EB-PVD에 의한 열벽코팅 수명에 대한 산화물 생성의 영향 (The Effect of Oxide Formation on the Lifetime of Plasma Sprayed or EB-PVD Thermal Barrier Coatings)

  • 이의열
    • 한국표면공학회지
    • /
    • 제27권2호
    • /
    • pp.91-98
    • /
    • 1994
  • For the plasma sprayed as well as the EB-PVD thermal barrier coatings, the fracture paths within the oxidation products developed at the interface between the partially stabilized zirconia ceramic coating and NiCoCrAlY bond coat during cyclic thermal oxidation has been investigated. It was observed that the fracture in the oxidation products primarily took place within the oxide such as $Ni_{1-x}Co_3(Al_,Cr)_2O_4$ or at the interface between the oxide and $Al_2O_3$. It was found that Al2O3 developed first, followed by the Ni/Co/Cr rich oxides such as ,,$Ni_{1-x}Co_x(Al_,Cr)_2O_4$ $Cr_2O_3$and NiO at the interface between the ceramic coating and the bond coat in a cyclic high temperature environment. It was therfore concluded that the formation of the oxide containing Ni, Cr and Co was a life-limiting event for thermal barrier coatings during cyclic thermal oxidation.

  • PDF

산화물 수소환원에 의한 W-Ni-Fe 나노복합분말의 합성과 특성 (Synthesis and Characteristics of W-Ni-Fe Nanocomposite Powder by Hydrogen Reduction of Oxides)

  • 이창우;윤의식;이재성
    • 한국분말재료학회지
    • /
    • 제8권1호
    • /
    • pp.49-54
    • /
    • 2001
  • The synthesis and characteristics of W-Ni-Fe nanocomposite powder by hydrogen reduction of ball milled W-Ni-Fe oxide mixture were investigated. The ball milled oxide mixture was prepared by high energy attrition milling of W blue powder, NiO and $Fe_2O_3$ for 1 h. The structure of the oxide mixture was characteristic of nano porous agglomerate composite powder consisting of nanoscale particles and pores which act as effective removal path of water vapor during hydrogen reduction process. The reduction experiment showed that the reduction reaction starts from NiO, followed by $Fe_2O_3$ and finally W oxide. It was also found that during the reduction process rapid alloying of Ni-Fe yielded the formation of $\gamma$-Ni-Fe. After reduction at 80$0^{\circ}C$ for 1 h, the nano-composite powder of W-4.57Ni-2.34Fe comprising W and $\gamma$-Ni-Fe phases was produced, of which grain size was35nm for W and 87 nm for $\gamma$-Ni-Fe, respectively. Sinterability of the W heavy alloy nanopowder showing full density and sound microstructure under the condition of 147$0^{\circ}C$/20 min is thought to be suitable for raw material for powder injection molding of tungsten heavy alloy.

  • PDF

One-Step β-Li2SnO3 Coating on High-nickel Layered Oxides via Thermal Phase Segregation for Li-ion Batteries

  • Seongmin Kim;Hanseul Kim;Sung Wook Doo;Hee-Jae Jeon;In Hye Kim;Hyun-seung Kim;Youngjin Kim
    • Journal of Electrochemical Science and Technology
    • /
    • 제14권3호
    • /
    • pp.293-300
    • /
    • 2023
  • The global energy storage markets have gravitated to high-energy-density and low cost of lithium-ion batteries (LIBs) as the predominant system for energy storage such as electric vehicles (EVs). High-Ni layered oxides are considered promising next-generation cathode materials for LIBs owing to their significant advantages in terms of high energy density. However, the practical application of high-Ni cathodes remains challenging, because of their structural and surface instability. Although extensive studies have been conducted to mitigate these inherent instabilities, a two-step process involving the synthesis of the cathode and a dry/wet coating is essential. This study evaluates a one-step β-Li2SnO3 layer coating on the surface of LiNi0.8Co0.2O2 (NC82) via the thermal segregation of Sn owing to the solubility limit with respect to the synthesis temperature. The doping, segregation, and phase transition of Sn were systematically revealed by structural analyses. Moreover, surface-engineered 5 mol% Sn-coated LiNi0.8Co0.2O2 (NC82_Sn5%) exhibited superior capacity retention compared to bare NC82 owing to the stable surface coating layer. Thus, the developed one-step coating method is suitable for improving the properties of high-Ni layered oxide cathode materials for application in LIBs.

Synthesis and Electrochemical Characteristics of Li0.7[Ni0.05Mn0.95]O2 as a Positive Material for Rechargeable Lithium Batteries

  • Shin, Sun-Sik;Kim, Dong-Won;Sun, Yang-Kook
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권5호
    • /
    • pp.679-682
    • /
    • 2002
  • Layered Na0.7[Ni0.05Mn0.95]O2 compounds have been synthesized by a sol-gel method, using glycolic acid as a chelating agent. Na0.7[Ni0.05Mn0.95]O2 precursors w ere used to prepare layered lithium manganese oxides by ion exchange for Na by Li, using LiBr in hexanol. Powder X-ray diffraction shows the layered Na0.7[Ni0.05Mn0.95]O2 has an O3 type structure, which exhibits a large reversible capacity of approximately 190 mA h g-1 in the 2.4-4.5 V range. Na0.7[Ni0.05Mn0.95]O2 powders undergo transformation to spinel during cycling.

리튬 이차 전지로의 응용을 위한 LiNiO_2$ 양극 물질의 전자상태 연구 (Electronic state of LiNiO_2$ cathode materials for Li ion barriers)

  • 전영아;김양수;노광수
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2003년도 추계학술발표강연 및 논문개요집
    • /
    • pp.216-216
    • /
    • 2003
  • The layered nickel oxides (LiNiO$_2$) have been studied for possible use as cathode materials i3l 4V lithium batteries. Although LiCoO$_2$ has been known as the best candidate material for Li-ion batteries, which produces the best performance LiNiO$_2$ is generally accepted as an attractive cathode material, because of its various advantages such as lower cost higher discharge capacity and better reversibility. In this investigation, we calculated the electric state of LiNiO$_2$ using DV-X$\alpha$ molecular orbital method in order to obtain the information of chemical bonding among the Li, Ni and O. In LiNiO$_2$, alternate layers of Li and Ni occupy the octahedral sites of a cubic close packing of oxide ions, making up a rhombohedral structure with an R-3m space group, Li in 3a, Ni in 3b, and O in 6c sites. On the basis of this, we made the cluster model and studied ionization of each atoms and interaction between atoms according to Mullilcen population analysis.

  • PDF

Perovskite형 산화물 $LaMO_3$$LaFe_{1-x}CO_xO_3$의 일산화탄소가스에 대한 센서 응답 특성 (The Sensor Response for CO Gas of $LaMO_3$ and $LaFe_{1-x}CO_xO_3$ in Perovskite Type Oxides)

  • 임병오;손태원;권동혁
    • 한국안전학회지
    • /
    • 제3권1호
    • /
    • pp.7-13
    • /
    • 1988
  • The oxides in perovskite type, $LaMO_3$ (M=Ni, Cr, Fe, Co), compared with gas sensors which have been used, were synthesised and then examined sensor response comparatively in order to make a thick film gas sensor having a good gas selectivity, durability and simple manufacturing. The oxides in perovskite type, $LaFe_{1-x}O_3$ (x=0.2, 0.4, 0.6, 0.8), which a part of Fe was replaced with Co, were examined with regard to their electric resistance with variable temperature and sensor response for carbon monoxide gas.

  • PDF

알칼라인 조건에서의 산소발생반응을 위한 N-doped NiO 촉매 (Nitrogen-doped Nickel Oxide Catalysts for Oxygen-Evolution Reactions)

  • 이진구;전옥성;설용건
    • Korean Chemical Engineering Research
    • /
    • 제57권5호
    • /
    • pp.701-705
    • /
    • 2019
  • 알칼라인 조건에서의 산소발생 반응(oxygen-evolution reaction: OER)은 다양한 에너지 시스템에 중요한 반응으로 여겨지고 있다. 큰 overpotential을 감소시키기 위해 다양한 촉매들이 개발되고 있으며, 그 중 NiO는 높은 활성도에 대한 가능성으로 인해 연구가 활발하게 진행되고 있다. 촉매의 표면에서 OER에 대한 메커니즘은 정확하게 규명되지는 않았지만, 산화물 촉매에서 Ni 또는 O vacancy와 같은 결함들은 많은 전기화학반응에서 활성점으로 여겨진다. 따라서, 본 연구에서는 nitrogen을 ethylenediamine을 이용하여 NiO의 O위치에 치환하여 Ni vacancy를 형성하고 그로 인해서 OER의 activity와 내구성에 어떠한 영향을 미치는지에 대해 분석해 보았다.

진공 플라즈마 용사법을 통해 형성된 NiCoCrAlY 오버레이 코팅의 반복 산화 거동 (Cyclic Oxidation Behavior of Vacuum Plasma Sprayed NiCoCrAlY Overlay Coatings)

  • 유연우;남욱희;박훈관;박영진;이성훈;변응선
    • 한국표면공학회지
    • /
    • 제52권6호
    • /
    • pp.283-288
    • /
    • 2019
  • MCrAlY overaly coatings are used as oxidation barrier coatings to prevent degradation of the underlying substrate in high temperature and oxidizing environment of the hot section of gas turbines. Therefore, oxidation resistance in high temperature is important property of MCrAlY coatings. Also, coefficients of thermal expansion (CTE) of MCrAlY have middle value of that of Ni-based superalloys and oxides, which have the effect of preventing the delamination of the surface oxides. Cyclic oxidation test is one of the most useful methods for evaluating the high temperature durability of coatings used in gas turbines. In this study, NiCoCrAlY overlay coatings were formed on Inconel 792(IN 792) substrates by vacuum plasma spraying process. Vacuum plasma sprayed NiCoCrAlY coatings and IN 792 susbstrates were exposed to 1000℃ one-hour cyclic oxidation environment. NiCoCrAlY coatings showed lower weight gain in short-term oxidation. In long-term oxidation, IN 792 substrates showed higher weight loss due to delamination of surface oxide but NiCoCrAlY coatings showed lower weight loss. X-ray diffraction (XRD) analysis showed α-Al2O3 and NiCr2O4 was formed during the cyclic oxidation test. Through cross-section observation using scanning electron microscopy (SEM) and electron back scatter diffraction (EBSD) analysis, thermally grown oxide (TGO) layer composed of α-Al2O3 and NiCr2O4 was formed and the thickness of TGO increased during 1000℃ cyclic oxidation test. β phase in upper side of NiCoCrAlY coating was depleted due to oxidation of Al and outer beta depletion zone thickness also increased as the cyclic oxidation time increased.