BFA10 Structural and electrochemical characterization of lithium excess and Al-doped nickel oxides synthesized by sol-gel method 졸-겔법을 이용한 리튬 과량 Li_{1+x}NiO₂ 와 Al-doped LiAl_vNi_{1-v}O₂의 구조와 전기화학적 특성 연구 박상호, 박기수, 남기석, 이윤성*, 마사키 요시오* School of chemical Engineering and Technology, College of Engineering, Chonbuk National University, Chonju 561-756, Korea * Department of Applied Chemistry, Saga University, 1 Honjo, Saga 840-8502, Japan The layered LiNiO₂ ($R\bar{3}$ m) has been of great interesting as positive electrode materials for secondary lithium batteries. Recently LiNiO₂ has been intensively investigated because of its comparatively low cost, large theoretical capacity (275mAh/g) and environmental advantages. However, LiNiO₂ has several problems such as difficulty in synthesis of the electroactive LiNiO₂, cation mixing and thermal stability. We reported here the synthesis of highly crystalline $\text{Li}_{1+x}\text{NiO}_2$ powders using the excess-lithium method and the Al doped nickelate ($\text{LiAl}_y\text{Ni}_{1-y}\text{O}_2$). Cycling properties of these materials are discussed in comparision with LiNiO_2 both at room temperature and high temperature(50°C). We also report that the synthesic property of LiNiO_2 which was synthesized by sol-gel method. The gas investgation was analyzed during the decomposition of gel precursor using a quadrapole mass spectroscopy (QMS). The QMS data reveals that oxygen might play an important role in the synthesis of highly crystallized LiNiO_2 . The initial capacity of the LiAl_yNi_{1-y}O₂ cells decreases with the increases of Al content, the aluminum dopant is very effective to increase the cycle performance of LiNiO₂ cells at high temperature(50°C).