• Title/Summary/Keyword: Ni nanowire

Search Result 37, Processing Time 0.027 seconds

Sensing and Interfacial Evaluation of Ni Nanowire Strands/Polymer Composites using Electro-micromechanical Technique (Electro-Micromechanical 시험법을 이용한 Ni Nanowire Strands 강화 고분자 복합재료의 Sensing과 계면 물성 평가)

  • Kim, Sung-Ju;Jung, Jin-Gyu;Park, Joung-Man
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.141-144
    • /
    • 2005
  • Sensing and interfacial evaluation of Ni nanowire strands/polymer composites were investigated using Electro-micromechanical technique. Electro-micromechanical techniques can be used as sensing method for micro damage, loading, temperature of interfacial properties. Using Ni nanowire strands/silicone composites with different content, load sensing response of electrical contact resistivity was investigated under tensile and compression condition. The mechanical properties of Ni nanowire strands with different type/epoxy composites were measured using uniformed cyclic loading and tensile test. Ni nanowire strands/epoxy composites showed humidity and temperature sensing within limited ranges, 20 vol% reinforcement. Some new information on temperature and humidity sensing plus loading sensing of Ni nanowire strands/polymer composites could be obtained from the electrical resistance measurement as a new concept of the nondestructive interfacial evaluation.

  • PDF

First-Principles Calculations for the Structual and Magnetic Properties of Nin (n=1-4) Nanowire Systems (단위 세포당 n(n=1-4)개의 원자를 갖는 Nin 나노와이어 계의 구조및 자기적 특성에 대한 제일원리 연구)

  • KIM, Dong-Chul
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.4
    • /
    • pp.193-196
    • /
    • 2006
  • The magnetic properties of Ni nanowires consisting of one to four atoms are investigated by mean of ab initio spin-polarized density functional calculations. Stability of zigzag-square $Ni_4$ nanowire is larger than $Ni_4$ nanowires with square. The magnetic moment of linear $Ni_1$ is $1.34{\mu_B}/atom$, which is the largest magnitude among moments of five Ni nanowires. The magnetic moment of Ninanowires show to be decreased by increasing the number of atoms in unit cell. The smallest moment is $0.91 {\mu_B}/atom$ for square $Ni_4$ nanowire. The spin polarization of zigzag-square $Ni_4$ nanowire is 32% higher than that of fcc bulk Ni.

GaN Nanowire Growth on Si Substrate by Utilizing MOCVD Methods (MOCVD 방법에 의한 Si 기판위 GaN 나노선의 성장)

  • Woo, Shi-Gwan;Shin, Dae-Keun;O, Byung-Sung;Lee, Hyung-Gyoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.11
    • /
    • pp.848-853
    • /
    • 2010
  • We have grown GaN nanowires by the low pressure MOCVD method on Ni deposited oxidized Si surface and have established optimum conditions by observing surface microstructure and its photoluminescence. Optimum growth temperature of $880^{\circ}C$, growth time of 30 min, TMG source flow rate of 10 sccm have resulted in dense nanowires on the surface, however further increase of growth time or TMG flow rate has not increased the length of nanowire but has formed nanocrystals. On the contrary, the increase of ammonia flow has increased the length of nanowires and the coverage of nanowire over the surface. The shape of nanowire is needle-like with a Ni droplet at its tip; the length is tens of micron with more than 40 nm in diameter. Low temperature photoluminescence obtained from the sample at optimum growth condition has revealed several peaks related to exciton decay near band-edge, but does not show any characteristic originated from one dimensional quantum confinement. Strong and broad luminescence at 2.2 eV is observed from dense nanowire samples and this suggests that the broad band is related to e-h recombination at the surface state in a nanowire. The current result is implemented to the nanowire device fabrication by nanowire bridging between micro-patterned neighboring Ni catalysis islands.

Self-Sensing and Interfacial Evaluation of Ni Nanowire/Polymer Composites Using Electro-Macromechanical Technique (전기적 미세역학적 시험법을 이용한 Ni nanowire강화 고분자 복합재료의 자체 감지능 및 계면 물성평가)

  • Kim, Sung-Ju;Yoon, Dong-Jin;Hansen George;DeVries K. Lawrence;Park, Joung-Man
    • Composites Research
    • /
    • v.19 no.5
    • /
    • pp.20-27
    • /
    • 2006
  • Self-sensing and interfacial evaluation of Ni nanowire/polymer composites were investigated using electro-macromechanical technique, which can be used fur a feasible sensing measurement on tensile and compressive loading/consequent unloading, temperature, and humidity. Mechanical properties of Ni nanowire with different aspect ratio and adding contents in either epoxy or silicone composites were measured indirectly using electro-pullout test under uniform and non-uniform cyclic loadings. Comparing apparent modulus with the conventional mechanical tensile modulus of Ni nanowire/epoxy composites, the trends were consistent with each other. Ni nanowire/epoxy composites showed the sensing response on humidity and temperature. Self-sensing on applied tensile and compressive loading/unloading was also responded for Ni nanowire/silicone composites via electrical contact resistivity showing the opposite trend between tension and compression. It can be due to the different electrically-interconnecting mechanisms of dispersed Ni nanowires embedded in silicone matrix.

Nondestructive Sensing Evaluation of Ni Nanowire Strands and Carbon Nanotube/Epoxy Composites Using Electro-Micromechanical Techniques (Electro-Micromechanical 시험법을 이용한 Ni Nanowire Strands 및 Carbon Nanotube 강화 에폭시 복합재료의 비파괴 감지능 평가)

  • Jung, Jin-Gyu;Kim, Sung-Ju;Park, Joung-Man
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.269-272
    • /
    • 2005
  • Nondestructive damage sensing and load transferring mechanism of Ni nanowire strands and multi-wall carbon nanotube (MWCNT)/epoxy composites were investigated using electro-micromechanical techniques. MWCNT composite was especially prepared for high volume contents, 50 vol % of reinforcement. Electro-micromechanical techniques were applied to measure apparent modulus and contact resistance of Ni nanocomposites with their alignment and different diameters, and adding contents. Applied cyclic load affected on apparent modulus and electrical properties on nanocomposites due to various inherent properties of each CNMs. Contact resistivity on humidity sensing was a good indicator for monitoring as for multifunctional applications. Further study on actuation as well as sensing will be investigated for the following work continuously.

  • PDF

Fabrications of Silver Nanowire/NiO Based High Thermal-Resistance Hybrid Transparent Electrode (은나노선/Ni 산화물 고내열성 하이브리드 투명전극의 형성)

  • Jung, Sunghoon;Lee, Seunghun;Kim, Do-Geun
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.6
    • /
    • pp.486-491
    • /
    • 2017
  • Silver nanowire (AgNW) transparent electrode is one of next generations of flexible and transparent electrode. The electrode shows high conductivity and high transparency comparable to ITO. However, the electrode is weak against heat. The wires are separated into nanodots at temperature above $200^{\circ}C$. It causes the electrical resistance increase. Moreover, it is vulnerable to oxygen and moisture in the atmosphere. The improvement of thermal and moisture resistance of silver nanowire transparent electrode is the most important for commercializing. We proposed silver nanowires transparent electrode which is capped with very thin nickel oxide layer. The nickel oxide layer is five nanometers of thickness, but the heat and moisture resistance of the transparent electrode is effectively improved. The AgNW/NiO electrode can endure at $300^{\circ}C$ of temperature for 30 minutes, and resistance is not increased for 180 hours at $85^{\circ}C$ of temperature and 85% of relative humidity. We showed an applications of transparent and flexible heater using the electrode, the heater is operated more than $180^{\circ}C$ of temperature.

Effect of Solution Compositions on Properties of Ni-Fe Nano Thin Film and Wire Made by Electrodeposition Method (Electrodeposition법으로 제조한 Ni-Fe 나노박막 및 나노선의 특성에 미치는 용액 조성의 영향)

  • Koo, Bon-Keup
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.5
    • /
    • pp.243-247
    • /
    • 2010
  • The micro Vickers hardness and internal stress of Ni-Fe metal thin film synthesized by electrodeposition method at $25^{\circ}C$ were studied as a function of bath composition, and surface microstructure and atomic compositions of thin films were investigated by SEM and EDS. And the shape change of $200\;{\AA}$ Ni-Fe nanowires made using anodic aluminum oxide(AAO) templates by electrodeposition method were observed by SEM as a function of ultrasonic treatment time and bath composition. The Fe deposition contents on the substrate non-linearly increased with Fe ion concentration over total metal ion concentration. In case of low Fe contents film, the grain size is smaller and denser than high Fe contents deposited films, and the micro Vickers hardness increased with Fe contents of electrodeposited films. These results affected the shape change of nanowire after ultrasonic treatments.

Immobilization of Proteins on Silicon Surfaces Using Chemical and Electrochemical Reactions of Nitrobenzenediazonium Cations (나이트로벤젠다이아조늄 양이온의 화학 및 전기화학 반응을 이용한 실리콘 표면상으로의 단백질 고정)

  • Kim, Kyu-Won;Haque, Al-Monsur Jiaul;Kang, Hyeon-Ju
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.1
    • /
    • pp.70-74
    • /
    • 2010
  • The immobilization of proteins on silicon surfaces using electrochemical reaction has been studied. Chemical deposition of nitrobenzendiazonium (NiBD) cations is employed to modify silicon surfaces. Electrochemical reduction of nitro-group to primary amine-group have been conducted on the modified surfaces to activate silicon surfaces for the protein immobilization. Attachment of gold nanoparticles was used to prove the reduction. The current method was applied to selective activation of a silicon nanowire and immobilize proteins on the selected nanowire. It has been demonstrated that the use of chemical and electrochemical reaction NiBD is efficient for the selective immobilization of proteins on silicon nanowire surfaces.

Direct synthesis mechanism of amorphous $SiO_x$ nanowires from Ni/Si substrate (Ni/Si 기판을 사용하여 성장시킨 비결정질 $SiO_x$ 나노 와이어의 성장 메커니즘)

  • Song, W.Y.;Shin, T.I.;Lee, H.J.;Kim, H.;Kim, S.W.;Yoon, D.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.6
    • /
    • pp.256-259
    • /
    • 2006
  • The amorphous $SiO_x$ nanowires were synthesized by the vapor phase epitaxy (VPE) method. $SiO_x$ nanowires were formed on silicon wafer of temperatures ranged from $800{\sim}1100^{\circ}C$ and nickel thin film was used as a catalyst for the growth of nanowires. A vapor-liquid-solid (VLS) mechanism is responsible for the catalyst-assisted amorphous $SiO_x$ nanowires synthesis in this experiment. The SEM images showed cotton-like nanostructure of free standing $SiO_x$ nanowires with the length of more than about $10{\mu}m$. The $SiO_x$ nanowires were confirmed amorphous structure by TEM analysis and EDX spectrum reveals that the nanowires consist of Si and O.

Characterization of Nickel-coated Silver Nanowire Flexible Transparent Electrodes with a Random-mesh Structure Formed by Bubble Control (거품 제어에 의해 형성된 무정형 그물망 구조의 니켈이 코팅된 은나노와이어 유연 투명전극의 특성 분석)

  • Park, Jong Seol;Park, Tae Gon;Park, Jin Seok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.3
    • /
    • pp.36-42
    • /
    • 2020
  • Silver nanowire (AgNW) random-meshes with high transmittance, low sheet resistance, and high oxidation stability and flexibility were fabricated using solution-based processes. The random-mesh structure was obtained by forming bubbles whose sizes and densities were controlled using a corona treatment of polyethylene terephthalate (PET) substrates. To reduce the sheet resistance of the fabricated AgNW electrode, a washing process using ethanol solution was performed. In addition, nickel (Ni) was coated on AgNW to improve resistance to oxidation. The effects of corona treatment and Ni-coating on the transmittance, sheet resistance, oxidation stability, and flexibility of the AgNW electrodes were investigated.