• Title/Summary/Keyword: Ni coated steel

Search Result 58, Processing Time 0.025 seconds

Excellent Seam Weldable Nano-Composite Coated Zn-Ni Plating Steels for Automotive Fuel Tank

  • Jo, Du-Hwan;Yun, Sang-Man;Park, Kee-Cheol;Kim, Myung-Soo;Kim, Jong-Sang
    • Corrosion Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.16-23
    • /
    • 2019
  • Steels for automotive fuel tank require unique properties such as corrosion resistance for fuel, welding for joining, forming for press, and painting for exterior. Recently, automakers have been requiring excellent seam weldable steels to enhance manufacturing productivity of fuel tank. Thus, POSCO developed a new type of functional steels coated with nano-composite thin layer on Zn-Ni plating steels. The nano-composite coating solution was prepared by mechanical fine dispersion of solutions consisting of polymeric resin and nano-composite materials in aqueous media. The composite solution was coated on the plating steel surface by using roll coater and cured through induction furnace. These new developed plating steels were evaluated for quality performances such as seam and spot weldability, press formability, and corrosion resistance. These new functional steels coated with nano-composite layer exhibited excellent seam weldability and press formability. Detailed discussion of coating solution and experimental results suggest that nano-sized composite dispersion as coating layer plays a key role in enhancing the quality performance.

A Study on Tribological Characteristics for High Temperature Alloy Steel with Ni-Cr-Mo-V (Ni-Cr-Mo-V 내열강의 마찰마모 특성 연구)

  • Lim, Ho Gi;Bae, Mun Ki;Kim, Tae Gyu
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.29 no.6
    • /
    • pp.284-291
    • /
    • 2016
  • High temperature alloy steel such as Ni-Cr-Mo-V material has excellent properties of high strength and high heating resistance. It has been used for several military weapon components such as gun barrel of a warship, turbine rotor and turbine disk for nuclear power plant. Being curious about this material required excellent wear resistance and durability in extreme environmental conditions. A dry wear test at the ambient air and Ar gas conditions in the room temperature were performed in this study. What's more a lubricant wear test at different temperature was conducted. In addition that DLC was coated on Ni-Cr-Mo-V alloy steel substrate with a thickness of $3{\mu}m$, a property of it was compare with lubricant conditions. All the coefficient of friction and wear volume, comparing with DLC coated specimens. The test parameters were selected as follows: 10 N for normal load; 80 rpm for sliding wear speed; and 300 m for the sliding wear distance.

Effects of Stoichiometry on Properties of NiAl Intermetallics coated on Carbon Steel through Combustion Synthesis (연소합성 코팅된 NiAl 금속간화합물의 화학양론이 미끄럼 마모특성에 미치는 영향)

  • Lee, Han-Young;Lee, Jae-Sung
    • Tribology and Lubricants
    • /
    • v.36 no.3
    • /
    • pp.124-132
    • /
    • 2020
  • The effect of the stoichiometry on the sliding wear properties of NiAl coatings has been investigated. Three different powder mixtures with the compositions of Ni-50at%Al, Ni-54at%Al and Ni-42at%Al were diepressed respectively, and which were subsequently coated on mild steel through combustion synthesis in an induction heating system. Sliding wear behavior of the coatings was examined against an alloyed tool steel using a pin-on-disc type sliding wear test machine. As results, it could be seen that powder mixture(Ni-54at%Al) with displaying Al-rich deviations from the stoichiometry of NiAl(Ni-50at%Al) was promoted the most the synthetic reactivity. The microstructure of the coating layer with the compositions of Ni-54at%Al exhibits the porous NiAl single phase structure. However, the microstructure of the coating layer of the compositions of Ni-42at%Al exhibits the denser multi-phase structure containing several intermediate phases in addition to NiAl. Densification of the coating layer was enhanced by increasing the reacting temperature. On the other hand, the wear properties of the coating layers showed that the wear mode at speeds of around 1 m/s was severe wear, regardless of the stoichiometry and reacting temperature. However, wear properties of coating layer with the compositions of Ni-42at%Al were superior to those of coating layer with the compositions of Ni-54at%Al. This would be attributed by the fact that coating layer with the compositions of Ni-42at%Al develops little void and much intermediate phases with high strength.

Analysis of Sliding Wear Properties for Arc-melted Intermetallic Compounds of Ni3Al, NiAl and TiAl (Arc melting으로 제조한 금속간화합물 Ni3Al, NiAl 및 TiAl의 미끄럼 마모특성 해석)

  • Lee, Han-Young;Kim, Tae-Jun;Cho, Yong-Jae
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.5
    • /
    • pp.267-273
    • /
    • 2009
  • Three types of structural intermetallic compounds, $Ni_3Al$, NiAl and TiAl, having each single phase structure without pores were produced by arc-melting process. Their sliding wear properties were investigated against a hardened tool steel. It was shown that the wear of the intermetallic compounds was hardly occurred against the hardened tool steel. TiAl compound showed the best wear resistance among them. In this case, wear was preferentially occurred on the surface of the hardened tool steel of the mating material which has higher hardness. It could be found that the wear mode on intermetallics without pores by arc-melting process was different from that on its porous layer coated on steel by combustion synthesis.

A Study on Optimization of Alumina and Catalysts Coating on Tube Reactor for Endothermic Reaction of n-Dodecane Under Supercritical Conditions (고온, 고압 조건에서 n-dodecane 액체연료의 흡열분해를 위한 관벽 내 알루미나 및 촉매 코팅 최적화 연구)

  • Kim, Sung Su;Lee, Sang Moon;Lee, Ye Hwan;Lee, Dong Yoon;Gwak, Ji-Yeong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.3
    • /
    • pp.56-61
    • /
    • 2021
  • In this study, Al2O3 and H-ZSM-5 were coated on the inner wall of the stainless steel tube for the stable use of liquid hydrocarbon fuel and an endothermic catalyst used as coolant for hypersonic flying vehicles. Coke production is inevitable by the endothermic decomposition reaction of the liquid hydrocarbon fuel, and Fe, Ni metals induce the production of the filamentous coke by using a stainless steel tube reactor as a cooling channel. By coating the stainless steel with H-ZSM-5, Fe and Ni metals are prevented from being directly exposed to the liquid hydrocarbon fuel, and the formation of the filamentous coke is inhibited. In addition, Al2O3 is coated between the stainless steel and H-ZSM-5 to enhance adhesion bond strength.

The Effect of Ball-milling Energy on Combustion Synthesis Coating of Cu-Al-Ni Based Intermetallics (Cu-Al-Ni계 금속간화합물의 연소합성 Coating에 미치는 Ball Mill처리의 영향)

  • Lee, Han-Young
    • Tribology and Lubricants
    • /
    • v.27 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • The possibility of Cu-Al-Ni intermetallic coating on the mild steel through the combustion synthesis has been investigated. In particular, the effect of the ball milling energy on the microstructure of the coating layer was examined to obtain the best coating condition. Experimental results show that Cu-Al-Ni powder compact was explosively synthesized and successfully coated with the steel matrix. It was revealed that the formation of $Cu_9Al_4$ intermetallic decreased with increase in the ball milling energy. This result supports that the high energy ball milling would be effective for obtaining the most suitable microstructure for Cu-Al-Ni coating layer. However, the excessive ball milling energy seems to decrease the bonding strength between the coating layer and the matrix.

High Temperature Oxidation and Sulfidation of Ni-15at.%W Coatings

  • Kim Chanwou;You Teayoul;Shapovalov Yuriy;Ko Jaehwang;Lee Dongbok;Lee Kyuhwan;Chang Doyon;Kim Dongsoo;Kwon Sikchol
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.1
    • /
    • pp.1-6
    • /
    • 2005
  • Ni-15at.% W coatings with film thicknesses of 20-40 ㎛ were electroplated on a steel substrate, and their oxidation behavior was investigated at 700 and 800℃ in air. For comparison, a pure Ni coating and a bulk Ni were also oxidized. The Ni-15at.%W coating displayed the worst oxidation resistance, due to the formation of less-protective NiO, Fe₂O₃, NiFe₂O₄ and NiWO₄. The corrosion behavior Ni-15at.%W coatings electroplated on a steel substrate was similarly investigated at 700 and 800℃ in the Ar-l%SO₂ atmosphere. For comparison, the uncoated steel substrate was also corrosion-tested in the Ar-l %SO₂ atmosphere. Severe scale spallation and the internal corrosion of the steel that occurred in the uncoated substrate were not observed in the coated specimen. However, it seemed that the Ni-15at.%W coating cannot be a potential candidate as a sulfidation-resistant coating, due to the formation of less-protective NiO, NiS, WO₃ and NiWO₄.

Characterization of DLC Coated Surface of Fe-3.0%Ni-0.7%Cr-1.4%Mn-X Steel (DLC 코팅한 Fe-3.0%Ni-0.7%Cr-1.4%Mn-X강의 표면특성평가)

  • Jang, Jaecheol;Kim, Song-Hee
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.1
    • /
    • pp.13-19
    • /
    • 2014
  • The various surface treated conditions of Fe-3.0%Ni-0.7%Cr-1.4%Mn-X steel such as as-received, ion nitriding, DLC coated, DLC coated after nitriding for 3 hrs and 6 hrs were investigated to evaluate the beneficial effect for plastic mold steel. Micro Vickers hardness tester was used to estimate nitriding depth from the hardness profile and to measure hardness on the surface. Elastic modulus and residual stress were measured by a nanoindentator. Scratch test and SP (small ball punch test) were utilized to assess the adhesive strength of DLC coating. The depth of nitriding layer was measured as $50{\mu}m$ for the condition of 3 hrs nitriding and $90{\mu}m$ for that of 6 hrs nitriding. Hardness, elastic modulus, residual stress of DLC coating were 20.37 GPa, 162.78 GPa and -1456 MPa respectively. Residual stress on the surface of DLC coating after nitriding could increase to -3914 MPa by introducing nitriding before DLC coating. During the 'Ball-On-Disc' test ${\gamma}^{\prime}$ particles pulled out from the surface of nitrized layer tend to enhance abrasive wear mode since the fraction of ${\gamma}^{\prime}$ (Fe4N) in ion-nitrized layer is known to increases with nitriding time. Thus the specific wear rate of the nitriding layer increased. Comparing with nitriding the specific wear rate in work piece disc as well as ball decreased prominently in DLC coating due to the remarkable reduction in friction coefficient.

Corrosion Resistance of Mg-Added Galvannealed Steel Sheets with Nano-Composite Coating

  • Jo, Du-Hwan;Yun, Sang-Man;Paik, Doo-Jin;Kim, Myung-Soo;Hong, Moon-Hi
    • Corrosion Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.57-65
    • /
    • 2020
  • As competition among global automakers intensifies, demand for materials that are better in price and performance is increasing. While steel and plastic materials compete for automotive fuel tanks, plastic materials have advantages such as light weight for automobiles. However, they have high prices. Accordingly, in this paper, four types of Zn-X plated steel sheets, electroplating (X = none, Sn) and galvannealed (X = Fe, Fe-Mg), were manufactured and their applicability as a fuel tank material was evaluated. Nano-composite coating solution with good conductivity was treated on the surface of plated steels using a roll coater and then cured through induction furnace to improve corrosion resistance. Quality characteristics such as corrosion resistance, fuel resistance to diverse gasoline and diesel fuels, and seam weldability were evaluated for the above plated steels. Their properties were compared and analyzed with conventional Zn-Ni electroplating steels. Among the above plated steels, Zn-Fe-Mg galvannealed steels coated with nano-composite coating exhibited better properties than other steels. Detailed experimental results suggest that evenly distributed Mg elements on the coating layer play a key role in the enhanced quality performance.