• Title/Summary/Keyword: Ni Catalyst size

Search Result 74, Processing Time 0.024 seconds

Nickel Nanoparticles: An Ecofriendly and Reusable Catalyst for the Synthesis of 3,4-Dihydropyrimidine-2(1H)-ones via Biginelli Reaction

  • Sapkal, Suryakant B.;Shelke, Kiran F.;Shingate, Bapurao B.;Shingare, Murlidhar S.
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.351-354
    • /
    • 2010
  • Nickel nanoparticles (Ni NPs) appeared to exhibit the catalytic activity in one-pot cyclocondensation reaction for the preparation of 3,4-dihydropyrimidine-2(1H)-ones via Biginelli reaction from aromatic/heteroaromatic/aliphatic aldehydes, urea/thiourea and ethyl acetoacetate under microwave irradiation has been described. The UV absorbance spectra showed metallic Ni characteristics and appreciate with the particle size determined by Transmission electron microscopy (TEM). After reaction course the Ni NPs can be re-covered and reused without any apparent loss of activity.

The Selective Leaching of Al-Ni Alloy Nano Powders Prepared by Electrical Wire Explosion (전기선 폭발법에 의하여 제조된 Al-Ni 합금 나노분말의 선택적 침출)

  • Park, Je-Shin;Kim, Won-Baek;Suh, Chang-Youl;Chang, Han-Kwon;Ahn, Jong-Gwan;Kim, Byoung-Kyu
    • Journal of Powder Materials
    • /
    • v.15 no.4
    • /
    • pp.308-313
    • /
    • 2008
  • Al-Ni alloy nano powders have been produced by the electrical explosion of Ni-plated Al wire. The porous nano particles were prepared by leaching for Al-Ni alloy nano powders in 20wt% NaOH aqueous solution. The structural properties of leached porous nano powder were investigated by nitrogen physisorption, X-ray diffraction (XRD) and transmission Microscope (TEM). The surface areas of the leached powders were increased with amounts of AI in alloys. The pore size distributions of these powders were exhibited maxima at range of pore diameters 3.0 to 3.5 nm from the desorption isotherm. The maximum values of those were decreased with amounts of Al in alloys.

Synthesis Processing of the Fine (Ni, Zn)-ferrite Powder for $CO_2$ Decomposition of the Flue Gas in the Iron Foundry (제철소의 연소배가스 $CO_2$ 분해용 (Ni, Zn)-ferrite 미세분말 합성공정 연구)

  • 김정식;안정률
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.2
    • /
    • pp.164-167
    • /
    • 2000
  • Flue gases in the iron foundry consist of 15~20% CO2 as an air pollution gas whose emission should be mitigated in order to protect the environment. In the present study, ultrafine powders of NixZn1-xFe2O4 as a potential catalyst for the CO2 decomposition were prepared by the coprecipitation methods. Oxygen deficient ferrites (MeFe2O4-$\delta$) can decompose CO2 as C and O2 at a low temperature of about 30$0^{\circ}C$. The XRD result of synthesized ferrites showed the spinel structure of ferrites and ICP-AES and EDS quantitative analyses showed the composition similar with initial molar ratios of the mixed solution prior to reaction. The BET surface area of the (Ni, Zn)-ferrites was about 77~89.5$m^2$/g and their particle size was observed about 10~20 nm. The CO2 decomposition efficiency of the oxygen deficient (Nix, Zn1-x)-ferrites was the highest at x=0.3, and the ternary (Ni, Zn)-ferrites was better than that of binary Ni-ferrites.

  • PDF

The Effect by Aqueous NH4OH Treatment on Ru Promoted Nickel Catalysts for Methane Steam Reforming (암모니아 용액 처리에 의한 Ru-Ni/Al2O3 촉매의 메탄 수증기 개질 반응에 미치는 영향)

  • Lee, Jung Won;Jeong, Jin Hyeok;Seo, Dong Joo;Seo, Yu Taek;Seo, Yong Seog;Yoon, Wang Lai
    • Applied Chemistry for Engineering
    • /
    • v.17 no.1
    • /
    • pp.87-92
    • /
    • 2006
  • The steam reforming of methane over Ru-promoted $Ni/Al_2O_3$ was carried out. Compared with $Ni/Al_2O_3$, which needs pre-reduction by $H_2$, $Ru/Ni/Al_2O_3$ catalysts exhibited relatively higher activity than conventional $Ni/Al_2O_3$. According to $H_2-TPR$ of reduced or used catalysts and $CH_4-TPR$, it was revealed that the reduction of $RuO_x$ by $CH_4$ decomposition begins at a lower temperature ($220^{\circ}C$) and the reduced Ru facilitates the reduction of NiO, and leads to self-activation. To improve metal dispersion, the catalyst was soaked in 7 M aqueous $NH_4OH$ for 2 h at $45^{\circ}C$ while stirring. As a result, $Ru/Ni/Al_2O_3$ catalysts with aqueous $NH_4OH$ treatment have higher activity, larger metal surface area (by $H_2$-chemisorption), and small particle size (by XRD and XPS). It is noted that the amount of noble metal could be reduced by aqueous $NH_4OH$ treatment.

Basic Research to Develop PGM-free DeNOx Catalyst for LNT (LNT용 PGM-free DeNOx 촉매 개발을 위한 기초연구)

  • Jang, Kil Nam;Han, Kwang Seon;Hong, Ji Sook;You, Young-Woo;Hwang, Taek Sung
    • Clean Technology
    • /
    • v.21 no.2
    • /
    • pp.117-123
    • /
    • 2015
  • This inquiry was conducted to develop DeNOx catalyst for LNT. In order to develop appropriate catalysts, four catalysts, which do not use PGM (Platinum Group Metal), were carefully selected : Al/Co/Mn, Al/Co/Ni/Mn, Al/Co/Mn/Ca, Al/Co/Ni mixed metal oxides during preliminary experiments. Also, XRD, EDS, SEM, BET and TPD tests were carried as well to evaluate both physicochemical properties of such four catalysts. As a result of the experiment, four catalysts were composed of spinel-shaped crystals and had more than enough pore volume and size to have oxidation-reduction reaction of NOx gases. Additionally, through TPD test, all four types of catalysts were proved to possibly have an oxidation-reduction acid site and NO oxidation activities similar to commercial catalysts. Based on the results above, if we have further change in the composition components and active ingredients according to the catalysts that were chosen in this investigation, then we are more welcomed to expect to have an enhanced DeNox catalyst for LNT.

Preparation and Characterization of Ni Catalyst Supported on Mesoporous Silica for Methanation (메탄화 반응을 위한 중형 기공성 실리카 물질에 담지된 니켈 촉매의 제조와 특성 분석)

  • Yi, Jong-Heop;Kim, Woo-Young;Kang, Mi-Yeong;Cho, Won-Jun
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.5
    • /
    • pp.26-32
    • /
    • 2009
  • Ni catalysts on mesoporous silica and commercial silica were prepared for the methanation. XRD and TPR analyses indicated that Ni/mesoporous silica had smaller metal particle size and higher metal dispersion than that of Ni/commercial silica. In addition, Ni/mesoporous silica had stronger metal-support interaction. In methanation, Ni/mesoporous silica showed higher CO conversion and methane yield (65%) than Ni/commercial silica (58%). In the characterization results of catalysts after reaction, Ni/commercial silica was deactivated by the collapse of structure and metal sintering, but Ni/mesoporous silica showed stable catalytic performance.

  • PDF

Synthesis of self-aligned carbon nanotubes on a Ni particles using Chemical Vapour Deposition

  • Park, Gyu-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.64-64
    • /
    • 2000
  • Since its discovery in 1991, the carbon nanotube has attracted much attention all over the world; and several method have been developed to synthesize carbon nanotubes. According to theoretical calculations, carbon nanotubes have many unique properties, such as high mechanical strength, capillary properties, and remarkable electronical conductivity, all of which suggest a wide range of potential applications in the future. Here we report the synthesis in the catalytic decomposition of acetylene at ~65 $0^{\circ}C$ over Ni deposited on SiO2, For the catalyst preparation, Ni was deposited to the thickness of 100-300A using effusion cell. Different approaches using porous materials and HF or NH3 treated samples have been tried for synthesis of carbon nanotubes. It is decisive step for synthesis of carbon nanotubes to form a round Ni particles. We show that the formation of round Ni particles by heat treatment without any pre-treatment such as chemical etching and observe the similar size of Ni particles and carbon nanotubes. Carbon nanotubes were synthesized by chemial vapour deposition ushin C2H2 gas for source material on Ni coated Si substrate. Ni film gaving 20~90nm thickness was changed into Ni particles with 30~90nm diameter. Heat treatment of Ni fim is a crucial role for the growth of carbon nanotube, High-resolution transmission electron microscopy images show that they are multi-walled nanotube. Raman spectrum shows its peak at 1349cm-1(D band) is much weaker than that at 1573cm-1(G band). We believe that carbon nanotubes contains much less defects. Long carbon nanotubes with length more than several $\mu$m and the carbon particles with round shape were obtained by CVD at ~$650^{\circ}C$ on the Ni droplets. SEM micrograph nanotubes was identified by SEM. Finally, we performed TEM anaylsis on the caron nanotubes to determine whether or not these film structures are truly caron nanotubes, as opposed to carbon fiber-like structures.

  • PDF

Synthesis of Carbon Nanotube and Optical Application (탄소나노튜브의 제조 및 광학적 응용 연구)

  • Joo, Young-Joon;So, Won-Wook;Kim, Heejoo;Chol, Ho-Suk;Moon, Sang-Jin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.14 no.3
    • /
    • pp.247-257
    • /
    • 2003
  • To investigate the effect of preparing condition on the physical properties of carbon nanotubes suitable for optical applications, carbon nanotubes were synthesized by thermal chemical vapor deposition using Ni particles as a catalyst on stainless steel substrate and acetylene as a reactant gas. To examine the physical and optical properties, SEM, TEM, Ram an, UV-visible, and photoluminescence spectroscopy were used. The physical properties of carbon nanotubes such as diameter, degree of growth density and morphology were closely related to such experimental conditions as Ni particle size, growing pressure, and etching condit on of Ni particles, it appeared from the light absorbance and photoluminescence spectra of carbon nanotube mixture prepared with an addition of a photopolymer, P3HT(Poly(3-hexylthIop hene)) that carbon nanotube could do a role as a kind of electron acceptor for solar cell application.

Investigation of Nanometals (Ni and Sn) in Platinum-Based Ternary Electrocatalysts for Ethanol Electro-oxidation in Membraneless Fuel Cells

  • Ponmani, K.;Kiruthika, S.;Muthukumaran, B.
    • Journal of Electrochemical Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.95-105
    • /
    • 2015
  • In the present work, Carbon supported Pt100, Pt80Sn20, Pt80Ni20 and Pt80Sn10Ni10 electrocatalysts with different atomic ratios were prepared by ethylene glycol-reduction method to study the electro-oxidation of ethanol in membraneless fuel cell. The electrocatalysts were characterized in terms of structure, morphology and composition by using XRD, TEM and EDX techniques. Transmission electron microscopy measurements revealed a decrease in the mean particle size of the catalysts for the ternary compositions. The electrocatalytic activities of Pt100/C, Pt80Sn20/C, Pt80Ni20/C and Pt80Sn10Ni10/C catalysts for ethanol oxidation in an acid medium were investigated by cyclic voltammetry (CV) and chronoamperometry (CA). The electrochemical results showed that addition of Ni to Pt/C and Pt-Sn/C catalysts significantly shifted the onset of ethanol and CO oxidations toward lower potentials. The single membraneless ethanol fuel cell performances of the Pt80Sn10Ni10/C, Pt80Sn20/C and Pt80Ni20/C anode catalysts were evaluated at room temperature. Among the catalysts investigated, the power density obtained for Pt80Sn10Ni10/C (37.77 mW/cm2 ) catalyst was higher than that of Pt80Sn20/C (22.89 mW/cm2 ) and Pt80Ni20/C (16.77 mW/ cm2 ), using 1.0 M ethanol + 0.5 M H2SO4 as anode feed and 0.1 M sodium percarbonate + 0.5 M H2SO4 as cathode feed.

Fabrication of nickel nanoparticles-embedded carbon particles by solution plasma in waste vegetable oil

  • Pansuwan, Gun;Phuksawattanachai, Surayouth;Kerdthip, Kraiphum;Sungworawongpana, Nathas;Nounjeen, Sarun;Anantachaisilp, Suranan;Kang, Jun;Panomsuwan, Gasidit;Ueno, Tomonaga;Saito, Nagahiro;Pootawang, Panuphong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.10
    • /
    • pp.894-898
    • /
    • 2016
  • Solution plasma is a unique method which provides a direct discharge in solutions. It is one of the promising techniques for various applications including the synthesis of metallic/non-metallic nanomaterials, decomposition of organic compounds, and the removal of microorganism. In the context of nanomaterial syntheses, solution plasma has been utilized to produce carbon nanoparticles and metallic-carbon nanoparticle systems. The main purpose of this study was to synthesize nickel nanoparticles embedded in a matrix of carbon particles by solution plasma in one-step using waste vegetable oil as the carbon source. The experimental setup was done by simply connecting a bipolar pulsed power generator to nickel electrodes, which were submerged in the waste vegetable oil. Black powders of the nickel nanoparticles-embedded carbon (NiNPs/Carbon) particles were successfully obtained after discharging for 90 min. The morphology of the synthesized NiNPs/Carbon was investigated by a scanning electron microscope, which revealed a good dispersion of NiNPs in the carbon-particle matrix. The X-ray diffraction of NiNPs/Carbon clearly showed the co-existence of crystalline Ni nanostructures and amorphous carbon. The crystallite size of NiNPs (through the Ni (111) diffraction plane), as calculated by the Scherrer equation was found to be 64 nm. In addition, the catalytic activity of NiNPs/Carbon was evaluated by cyclic voltammetry in an acid solution. It was found that NiNPs/Carbon did not show a significant catalytic activity in the acid solution. Although this work might not be helpful in enhancing the activity of the fuel cell catalysts, it is expected to find application in other processes such as the CO conversion (by oxidation) and cyclization of organic compounds.