• Title/Summary/Keyword: Ni Catalyst

Search Result 514, Processing Time 0.022 seconds

A Study on Reaction Kinetics in Steam Reforming of Natural Gas and Methane over Nickel Catalyst (니켈촉매 상에서 천연가스와 메탄의 수증기 개질 반응에 관한 Kinetics 연구)

  • Seong, Minjun;Lee, Young-Chul;Park, Young-Kwon;Jeon, Jong-Ki
    • Applied Chemistry for Engineering
    • /
    • v.24 no.4
    • /
    • pp.375-381
    • /
    • 2013
  • Kinetics data were obtained for steam reforming of methane and natural gas over the commercial nickel catalyst. Variables for the steam reforming were the reaction temperature and partial pressure of reactants. Parameters for the Power law rate model and the Langmuir-Hinshelwood model were obtained from the kinetic data. As a result of the reforming reaction using pure methane as a reactant, the reaction rate could be determined by the Power law rate model as well as the Langmuir-Hinshelwood model. In the case of methane in natural gas, however, the Langmuir-Hinshelwood model is much more suitable than the Power law rate model in terms of explaining methane reforming reaction. This behavior can be attributed to the competitive adsorption of methane, ethane, propane and butane in natural gas over the same catalyst sites.

Effect of Electroplating Parameters on Oxygen Evolution Reaction Characteristics of Raney Ni-Zn-Fe Electrode (Raney Ni-Zn-Fe 전극의 산소발생 반응 특성에 미치는 도금변수의 영향)

  • CHAE, JAEBYEONG;KIM, JONGWON;BAE, KIKWANG;PARK, CHUSIK;JEONG, SEONGUK;JUNG, KWANGJIN;KIM, YOUNGHO;KANG, KYOUNGSOO
    • Journal of Hydrogen and New Energy
    • /
    • v.31 no.1
    • /
    • pp.23-32
    • /
    • 2020
  • The intermittent characteristics of renewable energy complicates the process of balancing supply with demand. Electrolysis technology can provide flexibility to grid management by converting electricity to hydrogen. Alkaline electrolysis has been recognized as established technology and utilized in industry for over 100 years. However, high overpotential of oxygen evolution reaction in alkaline water electrolysis reduces the overall efficiency and therefore requires the development of anode catalyst. In this study, Raney Ni-Zn-Fe electrode was prepared by electroplating and the electrode characteristics was studied by varying electroplating parameters like electrodeposition time, current density and substrate. The prepared Raney Ni-Zn-Fe electrode was electrochemically evaluated using linear sweep voltammetry. Physical and chemical analysis were conducted by scanning electron microscope, energy dispersive spectrometer, and X-ray diffraction. The plating time did not changed the morphology and composition of the electrode surface and showed a little effect on overpotential reduction. As the plating current density increased, Fe content on the surface increased and cauliflower-like structure appeared on the electrode surface. In particular, the overpotential of the electrode, which was prepared at the plating current density of 320 mA/㎠, has showed the lowest value of 268 mV at 50 mA/㎠. There was no distinguishable overpotential difference between the type of substrate for the electrodes prepared at 80 mA/㎠.

Promotion effect of Ru in Ni-based catalyst for combined $H_{2}O$ and $CO_{2}$ reforming of methane (메탄의 수증기/이산화탄소 복합 개질 반응용 니켈 촉매의 루테늄 증진 효과)

  • Jang, Won-Jin;Seo, Yu-Taek;Roh, Hyun-Seog;Koo, Kee-Young;Seo, Dong-Joo;Seo, Yong-Seog;Rhee, Young-Woo;Yoon, Wang-Lai
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.53-56
    • /
    • 2007
  • 미량의 Ru을 증진제로 첨가하여 니켈 촉매의 반응 활성을 증진시킴으로써, 저온 환원성과 장시간 반응에 대한 안정성을 확보하고자 하였다. Ni의 담지량은 12 wt%로 고정하였으며 이에 Ru을 각각 0.1, 0.3, 0.5 wt%로 변화시켜 2차 담지하였다. 메탄의 수증기/이산화탄소 복합 개질 반응에 있어 니켈 촉매에 Ru을 2차 담지 한 촉매는 800 $^{\circ}C$, GHSV(gas hourly space velocity) 265,000 $h^{-1}$ 하에서 100 %에 가까운 $CH_{4}$ 전환율을 보였으며, GHSV 1,060,000 $h^{-1}$ 일 때에도 10시간 동안 90 %의 $CH_{4}$ 전환율을 기록하였다. 또한 이 중 0.3 wt%의 Ru를 담지한 경우가 1,060,000 $h^{-1}$의 조건하에서도 95 %이상으로 가장 높은 $CH_{4}$ 전환율로 유지되었다. $H_{2}-TPR$ 분석 결과, Ni(12)/$MgAl_{2}O_{4}$ 와 비교해 볼 때 Ru(0.5)/Ni(12)/$MgAl_{2}O_{4}$와 Ru(0.3)/Ni(12)/$MgAl_{2}O_{4}$ 촉매의 경우 150 $^{\circ}C$에서 저온 환원이 가능한 $RuO_{2}$의 존재를 확인할 수 있었다.

  • PDF

Partial oxidation of n-butane over ceria-promoted nickel/calcium hydroxyapatite (세리아가 첨가된 니켈/칼슘 하이드록시 아파타이트 촉매 상의 부탄 부분산화 연구)

  • Kwak, Jung-Hun;Lee, Sang-Yup;Kim, Mi-So;Nam, Suk-Woo;Lim, Tae-Hoon;Hong, Seong-Ahn;Yoon, Ki-June
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.89-92
    • /
    • 2007
  • Partail oxidation(POX) of n-butane was investigated in this research by employing ceria-promoted Ni/calcium hydroxyapatite catalysts ($Ce_xNi_{2.5}Ca_{10}(OH)_2(PO_4)_6$ ; x = $0.1{\sim}0.3$) which had recently been reported to exhibit good catalytic performance in POX of methane and propane. The experiments were carried out with changing ceria content, $O_2/n-C_4H_{10}$ ratio and temperature. As the $O_2/n-C_4H_{10}$ feed ratio increased up to 2.75, n-$C_4H_{10}$ conversion and $H_2$ yield increased and the selectivity of methane and other hydrocarbons decreased. But with $O_2/n-C_4H_{10}$ = 3.0, $n-C_4H_{10}$ conversion and $H_2$ yield decreased. This is considered due to that too much oxygen may inhibit the reduction of Ni or induce the oxidation of Ni, which results in poor catalytic activity. The optimum $O_2/n-C_4H_{10}$ ratio lay between 2.50 and 2.75. $Ce_{0.1}Ni_{2.5}Ca_{10}(OH)_2(PO_4)_6$ showed the highest $n-C_4H_{10}$ conversion and $H-2$ yield on the whole. In durability tests, higher hydrogen yield and better catalyst stability were obtained with the $O_2/n-C_4H_{10}$ ratio of 2.75 than with the ratio of 2.5.

  • PDF

Preparation of Pt-, Ni- and Cr-Decorated SnO2 Tubular Nanofibers and Their Gas Sensing Properties (Pt, Ni, Cr이 도포된 튜브형 SnO2 나노섬유의 합성과 가스 감응특성)

  • Kim, Bo-Young;Lee, Chul-Soon;Park, Joon-Shik;Lee, Jong-Heun
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.211-215
    • /
    • 2014
  • The Pt-, Ni- and Cr-decorated tubular $SnO_2$ nanofibers for gas sensors were prepared by the electrospinning of polyvinylpyrrolidone (PVP) nanofibers containing Pt, Ni, and Cr precursors, the sputtering of $SnO_2$ on the electrospun PVP nanofibers, and the removal of sacrificial PVP parts by heat treatment at $600^{\circ}C$ for 2 h. Pt-decorated tubular $SnO_2$ nanofibers showed high response ($R_a/R_g=210.5$, $R_g$: resistance in gas, $R_a$: resistance in air) to 5 ppm $C_2H_5OH$ at $350^{\circ}C$ with negligible cross-responses to other interference gases (5 ppm trimethylamine, $NH_3$, HCHO, p-xylene, toluene and benzene). Cr-decorated tubular $SnO_2$nanofibers showed the selective detection of p-xylene at $400^{\circ}C$. In contrast, no significant selectivity to a specific gas was found in Ni-decorated tubular $SnO_2$ nanofibers. The selective and sensitive detection of gases using Pt-decorated and Cr-decorated tubular $SnO_2$ nanofibers were discussed in relation to the catalytic promotion of gas sensing reaction.

Wastewater Recycling from Electroless Printed Circuit Board Plating Process Using Membranes (분리막을 이용한 무전해 PCB 도금 폐수의 재활용)

  • 이동훈;김래현;정건용
    • Membrane Journal
    • /
    • v.13 no.1
    • /
    • pp.9-19
    • /
    • 2003
  • Membrane process was investigated to recover process water and valuable gold from washing water of electroless PCB plating processes. The filtration experiments were carried out using not only a RO membrane test cell to determine suitable membrane for washing water but also spiral wound membrane modules of nanofiltration and reverse osmosis for scale-up. At first, RO-TL(tap water, low pressure), RO-BL(brackish water, low pressure) and RO-normal(for water purifier) sheet membranes made by Saehan Co. were tested, and the performance of RO-TL membrane showed most suitable f3r recovery of soft etching, catalyst and Ni washing waters. As a result of RO test cell, the experiments for scale-up were carried out using RO-TL modules far water purifier at 7bar and $25^{\circ}C $The permeate flux fur Au washing water was about 30 LMH, but Au rejection was less than 80%. The permeate fluxes for Pd, Ni and soft etching washing water were about 22, 17 and 10 LMH, respectively. The Pd, Ni and Cu rejections showed more than 85, 97 and 98% respectively. The nanofiltration module for water purifier was introduced to recover Au selectively from Au, Ni and Cu ions in Au washing water. Most of Ni and Cu ions in the feed washing water were removed, and only Au ion was existed 81.9% in the permeate. Furthermore, Au ion in the permeate was concentrated and recovered by RO-TL membrane module. Finally, Au was also able to recover effectively by using 4 inch diameter spiral wound modules of NF and RO-TL membranes, in series.

Effect of Al2O3 Inter-Layer Grown on FeCrAl Alloy Foam to Improve the Dispersion and Stability of NiO Catalysts (NiO 촉매의 분산성 및 안정성 향상을 위하여 FeCrAl 합금 폼 위에 성장된 Al2O3 Inter-Layer 효과)

  • Lee, Yu-Jin;Koo, Bon-Ryul;Baek, Seong-Ho;Park, Man-Ho;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.25 no.8
    • /
    • pp.391-397
    • /
    • 2015
  • NiO catalysts/$Al_2O_3$/FeCrAl alloy foam for hydrogen production was prepared using atomic layer deposition (ALD) and subsequent dip-coating methods. FeCrAl alloy foam and $Al_2O_3$ inter-layer were used as catalyst supports. To improve the dispersion and stability of NiO catalysts, an $Al_2O_3$ inter-layer was introduced and their thickness was systematically controlled to 0, 20, 50 and 80 nm using an ALD technique. The structural, chemical bonding and morphological properties (including dispersion) of the NiO catalysts/$Al_2O_3$/FeCrAl alloy foam were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy and scanning electron microscopy-energy dispersive spectroscopy. In particular, to evaluate the stability of the NiO catalysts grown on $Al_2O_3$/FeCrAl alloy foam, chronoamperometry tests were performed and then the ingredient amounts of electrolytes were analyzed via inductively coupled plasma spectrometer. We found that the introduction of $Al_2O_3$ inter-layer improved the dispersion and stability of the NiO catalysts on the supports. Thus, when an $Al_2O_3$ inter-layer with a 80 nm thickness was grown between the FeCrAl alloy foam and the NiO catalysts, it indicated improved dispersion and stability of the NiO catalysts compared to the other samples. The performance improvement can be explained by optimum thickness of $Al_2O_3$ inter-layer resulting from the role of a passivation layer.

열 화학 기상법을 이용한 MWNT의 두께 및 형상 조절에 관한 연구

  • No, Ji-Yeong;Park, Sin-Yeong;An, Seong-Hun;Lee, Tae-Mu;Lee, Seon-Yeong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.25.2-25.2
    • /
    • 2010
  • CNT(Carbon Nanotube)는 특이한 구조 및 뛰어난 물성을 갖고 있어, 여러가지 분야에 응용 가능한 신소재로서 연구되어 왔다. 또한 모양 및 구조에 따라 기계, 전기, 화학적인 특성이 달라 다양한 분야에서 활용이 가능하다. 외국에서는 FED tip, TR, 디스플레이 소자, 수소저장체, 고강도 복합체 및 대 표면적 전극 등 CNT의 다양한 특성을 이용한 응용이 연구되고 있는 반면, 국내에서는 이론연구와 합성연구에 편중되어 있다. 본 연구에서는 열 화학 기상법 (Thermal CVD)을 이용하여 MWNT(Multi-wall nano tube)를 성장시켜 촉매두께, 온도, gas변수에 따른 CNT의 양상을 분석하였다. Ni catalyst는 DC magnetron sputter를 이용하여 5~50nm 두께로 증착하였으며, 성장온도는 $800^{\circ}C$에서 $950^{\circ}C$까지 변화시켰다. 기판의 pre-treatment 로 ammonia($NH_3$) gas를 주입한 후, carbon precursor인 methane($CH_4$) gas와 $H_2$ dilute gas를 1:4의 비율로 주입하여 CNT를 성장시켰다. FE-SEM과 TEM, 그리고 XRD를 이용해 성장된 CNT의 형상 및 구조를 분석한 결과, 낮은 온도에서는 100nm이상의 두께를 갖는 수직형상의 MWNT가 성장되었으며, $900^{\circ}C$이상의 높은 온도에서는 20nm이하의 amorphous carbon nano rod가 성장되었다. 각각의 MWNT, carbon nano rod는 온도가 높을수록 직경이 증가하는 추세를 나타냈으며, Ni catalyst가 얇아질수록 수직형상을 갖는 결과가 나타났다. 또한 ammonia gas의 pre-treatment여부에 따라 CNT의 수직 형상이 좌우되는 결과를 확인하였다. 향후 성장된 MWNT의 최적 조건을 도출하여 디스플레이 소자인 FED(Field Emission Display)분야 등에 응용 가능할 것으로 전망된다.

  • PDF

Design of Tritium Handling System(II): Injection System, Regeneration System (삼중수소취급계통의 설계(II): 주입계통, 재생계통)

  • 김광신;김경숙;정은수;손순환;김위수
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.117-123
    • /
    • 2003
  • In succession to the previous paper, the tritium injection system and the regeneration system of the tritium handling system are presented. Both systems should be placed inside glove boxes since there can be potential leakage of tritium from these systems. The tritium injection system should be capable of measuring the exact amount of the injected tritium to keep track of the tritium inventory. The tritium injection system is designed to recover the remaining tritium from the system after injection for the minimization of tritum release to the environment as well as for the recovery of precious resource. TRS equipment such as MS, Ni catalyst bed, and metal getter are regenerated with a standalone regeneration system. Unlike other equipments which can be regenerated by heating and purging with appropriate gas, regeneration of the metal getter used to recover tritium is somewhat complicated.

  • PDF

A Study on Activity Testing of Various Catalysts for Hydrogen Production from Ammonia (암모니아로부터 수소 제조를 위한 다양한 촉매 활성 테스트에 관한 연구)

  • JAE-HYEOK LEE;KYOUNG-HA SHIN;JINSIL KANG;HYEONHUI SHIN;SEYEON PARK;YUJIN CHOI;WANGYU SONG;HO-GEUN AHN
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.6
    • /
    • pp.587-593
    • /
    • 2023
  • This research project focused on the production of hydrogen through ammonia decomposition reactions while investigating how the reactivity of this process varies when employing different catalysts. Several metal oxide supports (Al2O3, La2O3, CeO2) were utilized as catalysts, with active metals from both the transition metal group (Co, Ni, Fe, Cr, Cu) and the noble metal group (Ru, Rh, Pd, Pt) impregnated onto these supports. Furthermore, the study examined how the reactivity evolves with changes in reaction temperature when employing the prepared catalysts. Additionally, the research delved into the distinctive activation energies associated with each of the catalysts. In this research, In the noble metal catalyst system, the order of high activity for ammonia decomposition reaction to produce hydrogen is Ru > Rh > Pt ≈ Pd. In the transition metal catalyst system, the order of high activity is Co > Ni > Fe > Cr > Cu.