• Title/Summary/Keyword: Ni Brazing

Search Result 58, Processing Time 0.024 seconds

Brazing Property of SUS304 Stainless Steel and BNi-2 Filler Metal with Vacuum Brazing : Fundamental Study on Brazeability with Ni-Based Filler Metal(I) (진공브레이징에 의한 SUS304 스테인리스강과 BNi-2계 삽입금속의 접합특성 : Ni기 삽입금속에 의한 브레이징 접합성의 기초적 검토(I))

  • Lee, Yong-Won;Kim, Jong-Hoon
    • Korean Journal of Materials Research
    • /
    • v.17 no.3
    • /
    • pp.142-146
    • /
    • 2007
  • Vacuum brazing method has been coming to an important process as one of the new fabricating techniques of metals and alloys. In this study, a vacuum brazing of SUS304 stainless steel with BNi-2 filler metal was carried out in $1{\times}10^{4}$ Torr of vacuum atmosphere. The formation of brittle intermetallic compounds in brazed joints between SUS304 stainless steel and BNi-2 filler metal is a major concern, since they considerably degrade the mechanical properties of joints. To obtain enough stable joining strength, it is necessary to understand the unique properties of brazing process with Ni-based filler metals containing boron. So, in this research we investigated the performance of SUS304/BNi-2 brazed system and the brazed joint properties were evaluated at room temperature by using tensile test. Metallurgical and fractographic analysis were used to characterize the microstructure, the mechanisms of brazing, and joint failure modes.

Evolution of Interfacial Microstructure in Alumina and Ag-Cu-Zr-Sn Brazing Alloy (알루미나/Ag-Cu-Zr-Sn 브레이징 합금계면의 미세조직)

  • Kim, Jong-Heon;Yoo, Yeon-Chul
    • Transactions of Materials Processing
    • /
    • v.7 no.5
    • /
    • pp.481-488
    • /
    • 1998
  • The active metal brazing was applied to bond Alumina and Ni-Cr steel by Ag-Cu-Zr-Sn alloy and the interfacial microstructure and reaction mechanism were investigated. Polycrystalline monoclinic $ZrO_2$ with a very fine grain of 100-150 nm formed at the alumina grain boundary contacted with Zr segregation layer at the interface. The $ZrO_2$ layer containing the inclusions and cracks were developed at the boundary of inclusion/$ZrO_2$ due to the difference in specific volume. The development of $ZrO_2$ at the interface was successfully explained by the preferential penetration of $ZrO_2$ at the interface was successfully explained by the preferential penetration of Zr atoms a higher concentration of oxygen and a high diffusion rate of Al ions into molten brazing alloy.

  • PDF

DEVELOPMENT OF TITANIUM-BASED BRAZING FILLER METALS WITH LOW-MELTING-POING

  • Onzawa, Tadao;Tiyama, Takashi
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.539-544
    • /
    • 2002
  • Titanium and titanium alloy are excellent in corrosion resistance and specific intensity, and also in the biocompatibility. On the other hand, the brazing is bonding method of which productivity and reliability are high, when the complicated and precise structure of the thin plate is constructed. However, though conventional titanium-based brazing filler metal was excellent in bond strength and corrosion resistance, it was disadvantageous that metal structure and mechanical property of the base metal deteriorated, since the brazing temperature (about 1000 C) is considerably high. Authors developed new brazing filler metal which added Zr to Ti-Cu (-Ni) alloy which can be brazed at 900 C or less about 15 years ago. In this paper, the development of more low-melting-point brazing filler metal was tried by the addition of the fourth elements such as Ni, Co, Cr for the Ti-Zr-Cu alloy. As a method for finding the low-melting-point composition, eutectic composition exploration method was used in order to reduce the experiment point. As the result, several kinds of new brazing filler metal such as 37.5Ti-37.5-Zr-25Cu alloy (melting point 825 C) and 30Ti-43Zr-25Cu-2Cr alloy (melting point: 825 C) was developed. Then, the brazing joint showed the characteristics which were almost equal to the base metal from the result of obtaining metallic structure and strength of joint of brazing joint. However, the brazing filler metal composition of the melting point of 820 C or less could not be found. Consequentially, it was clarified that the brazing filler metal developed in this study could be practically sufficiently used from results such as metal structure of brazing joint and tensile test of the joint.

  • PDF

Development of Titanium-based Brazing Filler Metals with Low-melting-point

  • Onzawa, T.;Iiyama, T.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.2
    • /
    • pp.14-18
    • /
    • 2002
  • Titanium and titanium alloy are excellent in corrosion resistance and specific intensity, and also in the biocompatibility. On the other hand, the brazing is bonding method of which productivity and reliability are high, when the complicated and precise structure of the thin plate is constructed. However, though conventional titanium-based brazing filler metal was excellent in bond strength and corrosion resistance, it was disadvantageous that metal structure and mechanical property of the base metal deteriorated, since the brazing temperature ( about $1000^{\circ}C$ ) is considerably high. Authors developed new brazing filler metal which added Zr to Ti-Cu (-Ni) alloy which can be brazed at $900^{\circ}C$ or less about 15 years ago. In this paper, the development of more low-melting-point brazing filler metal was tried by the addition of the fourth elements such as Ni, Co, Cr for the Ti-Zr-Cu alloy. As a method for finding the low-melting-point composition, eutectic composition exploration method was used in order to reduce the experiment point. As the result, several kinds of new brazing filler metal such as 37.5Ti-37.5-Zr-25Cu alloy (melting point: $825^{\circ}C$) and 30Ti-43Zr-25Cu-2Cr alloy (melting point: $825^{\circ}C$) was developed. Then, the brazing joint showed the characteristics which were almost equal to the base metal from the result of obtaining metallic structure and strength of joint of brazing joint. However, the brazing filler metal composition of the melting point of $820^{\circ}C$ or less could not be found. Consequentially, it was clarified that the brazing filler metal developed in this study could be practically sufficiently used from results such as metal structure of brazing joint and tensile test of the joint.

  • PDF

Effect of Brazing Process Variables on joining Characteristics of Ni-based Superalloy (니켈기 초합금의 접합특성에 미치는 브레이징 공정변수의 영향)

  • Kim Gyeong-Ho;Kim Gwang-Ho;Lee Min-Gu;Lee Ho-Jin;Kim Heung-Hoi;Kim Suk-Hwan
    • Proceedings of the KWS Conference
    • /
    • 2006.05a
    • /
    • pp.266-268
    • /
    • 2006
  • The effects of the brazing temperature and homogenizing time for brazed specimens on the joint of Ni-based superalloys such as Haynes 250, Inconel 617 and Hastelloy-X were investigated. The brazing alloy is nickel base MBF 15. The foil had a thickness of $38{\mu}m$, which was used two sheets of that for the all experiments. The experimental brazing was carried out by a brazing process in a vacuum of approximately $2{\times}10^{-5}$ Torr, an applied pressure of about 0.74MPa and the three kinds of brazing temperatures were 1100, 1150, and $1190^{\circ}C$ for a holding time of 5 to 1440 minutes. Microstructural observations were made on the cross-sectional samples by using an optical microscope(OM), scanning electron microscope(SEM), and electron probe X-ray microanalyzer(EPMA). The tensile tests were performed at room temperature with a cross head speed 1.5 mm/min according to ASTM E8M. The results show that excellent joint tensile strengths of as high as 788MPa were obtained when processed at $1190^{\circ}C$ for 5 minutes.

  • PDF

Effect of Filler Metal Powder on Microstructure and Polishing Characteristics of the Brazing Diamond

  • Kim, Hoon-Dong;An, Jung-Soo
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1138-1139
    • /
    • 2006
  • The present study has shown that the effect of boron and phosphorus in Ni-Cr-Si-X alloy to interfacial reactions and bonding strength of diamond-steel substrate, and the influence of various construction parameters on the formation of the topography of the tool. And these factors are required to making a good brazed tool. The microstructures and phase change of the brazed region were analyzed into SEM, EDS. According to the electron probe microanalysis, while brazing, the chromium present in the brazing alloy segregated preferentially to the surface of the diamond to form a chromium rich reaction product, which was readily wetted by the alloy.

  • PDF

Characteristics of Ni-based Alloy Bond in Diamond Tool Using Vacuum Brazing Method

  • An, Sang-Jae;Song, Min-Seok;Jee, Won-Ho
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1130-1131
    • /
    • 2006
  • We found that the """interface reaction between Ni-based alloy bond, diamond, and steel core is very critical in bond strength of diamond tool. None element from metal bond diffuses into the steel core but the Fe element of steel core was easily diffused into the bond. This diffusion depth of Fe has a great effect on the bonding strength. The Cr in steel core accelerated the Fe diffusion and improved the bond strength, on the other hand, carbon decreased the strength. Ni-based alloy bond including Cr was chemically bonded with diamond by forming Cr carbide. However, the Cr and Fe in STS304 were largely interdiffused, the strength was very low. The Cr passivity layer formed at surface of STS304 made worse strength at commissure in brazing process.

  • PDF

Analysis of Bonding Interfaces between Cemented Carbide and Stainless Steel made via Hot Vacuum Brazing (고온 진공 브레이징을 이용한 초경합금과 스테인리스강의 접합 계면 특성)

  • Park, D.H.;Hyun, K.H.;Kwon, H.H.
    • Transactions of Materials Processing
    • /
    • v.29 no.6
    • /
    • pp.307-315
    • /
    • 2020
  • The cemented carbide and stainless steel were bonded using a hot-vacuum brazing method to analyze the bonding interface. Since it is suitable for the hot vacuum brazing, nickel metal was used as a binder among the main components of the cemented carbide, and a new cemented carbide material was developed by adjusting the alloy composition. The paste, which is one of the important factors affecting the hot vacuum brazing bonding, was able to improve brazing adhesion by mixing solder as Ni powder and a binder as an organic compound at an appropriate ratio. Division of the stainless steel yielded a dense brazing result. This study elucidated the interfacial characteristics of wear-resistant parts by bonding stainless steel and cemented carbide via hot vacuum brazing.

High Temperature Oxidation Behavior of the Brazed Joint in Fe-Cr-Al-Y Alloy (Fe-Cr-AI-Y합금에서 브레이징 접합부의 고온산화거동)

  • Mun, Byeong-Gi;Choe, Cheol-Jin;Park, Won-Uk
    • 연구논문집
    • /
    • s.27
    • /
    • pp.201-208
    • /
    • 1997
  • To improve the joining characteristics of metallic converter substrate for exhaust gas cleaning, high temperature brazing process has been studied. In this study, the effect of chemical composition of brazing filler metal on the oxidation behavior of brazed joints was investigated closely. Brazing was carried out at $1200^\circC$ in vacuum furnace using nickel-based filler metals : BNi-5 powder(Ni-Cr-Si base alloy) and MBF-50 foil(Ni-Cr-Si-B). The MBF-50 containing 1-1.5 wt%B showed relatively poor oxidation resistance of the brazed joints compared to BNi-5, because of the faster invasion of oxygen through the Kirkendal voids along the interface of mother alloy/filler metal.

  • PDF