• Title/Summary/Keyword: Ni 함량

Search Result 576, Processing Time 0.03 seconds

Heavy Metal Contents of Vegetables Available on the Markets in Seoul (서울에서 유통 중인 채소류의 중금속 함량에 관한 연구)

  • Choi, Chae-Man;Choi, Eun-Jung;Kim, Tae-Rang;Hong, Chae-Kyu;Kim, Jung-Hun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.12
    • /
    • pp.1873-1879
    • /
    • 2010
  • This study was conducted to estimate the heavy metal contents of vegetables available on the markets in Seoul area. Concentrations of mercury (Hg), lead (Pb), cadmium (Cd), arsenic (As), chrome (Cr), nickel (Ni), copper (Cu), and zinc (Zn) were measured in 300 samples using a mercury analyzer and inductively coupled plasma optical emission spectrometer (ICP-OES) after wet digestion. The average values of heavy metals in vegetables were as follows [mean (minimum~maximum), mg/kg]; Hg: 0.0005 (N.D~0.007), Pb: 0.011 (N.D~0.259), Cd: 0.012 (N.D~0.188), As: 0.002 (N.D~0.142), Cr: 0.100 (0.019~0.954), Ni: 0.093 (0.003~1.231), Cu: 1.098 (0.072~36.29), and Zn: 3.48 (0.485~21.31). The heavy metal contents of vegetables available on the markets in Seoul were almost the same as or lower than those reported in other studies. The weekly average intakes of mercury, lead and cadmium from vegetables take 0.44~7.71% of PTWI (Provisional Tolerable Weekly Intakes) that the FAO/WHO Joint Food Additive and Contaminants Committee sets for evaluation of food safety.

Mineralogy and the Behavior of Heavy Metals at Different Depths in Tailing Impoundment of the Samsanjeil mine (삼산제일광산 광미 매립지의 매립 심도에 따른 광물 변화 및 중금속의 거동)

  • Kim, Heong-Jung;Kim, Yeong-Kyoo;Choo, Chang-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.229-240
    • /
    • 2009
  • In Gosung, the symptoms similar to itai-itai disease from neighboring residents of the Samsanjeil mine have been social issues. Therefore, various researches on the behavior of heavy metals of the tailings impoundment of 280,000 ton in the Samsanjeil mine are required. In this paper, mineralogical and geochemical studies on the tailings at different depths in the Samsanjeil mine were investigated and the factors on the behavior of heavy metals were also studied. At two sampling sites (NN and SN), samples were collected at different depths down to 1 m. At NN sites, pH values decreased with depth, while those at SN sites did not show significant changes. XRD analysis showed that the main minerals in the tailings were quartz, microcline, muscovite, and chlorite with minor amount of gypsum. There were no noticeable changes in the mineral composition with depth. At NN sites, the amount of calcite was negligible, and jarosite, which usually occurs at acid soil or acid mine drainage at pH lower than 4, was identified. However, the samples at SN site contained relatively high contents of calcite with pyrite. Therefore, calcite seemed to buffer the acid and control pH at SN site. The contents of heavy metals in tailings were in the order of Cu > As > Zn > Pb > Co > Cr > Ni > Cd. The heavy metal concentrations in the tailings were closely related with pH changes. The concentrations of Cd and Co were much lower at NN site at which pH values are low than those at SN sites. Contrary to that, Cr and As which exist as oxyanions showed higher concentrations at SN sites. This result showed that the behaviors of heavy metals in our study area were controlled by pH which is influenced by the contents of calcite.

Nutrient Composition and Heavy Metal Contents of Matured Livestock Liquid Fertilizer in Korea (국내 가축분뇨 부숙액비의 비료성분 및 중금속 함량 분포특성)

  • Kang, Tak-Won;Halder, Joshua Nizel;Kim, Soo-Ryang;Yoon, Young-Man;Lee, Myung-Gyu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.4
    • /
    • pp.31-39
    • /
    • 2017
  • From July to August 2013, liquid fertilizers produced at 180 liquid manure public resource centers and liquid fertilizer distribution centers were collected. The maturity of liquid fertilizers was measured using the mechanical maturity measurement device. The nutrient contents (nitrogen, phosphorus, and potassium), physicochemical properties, and heavy metal content of 46 liquid fertilizers were investigated in this study. We used a matured liquid fertilizer with a total number of 46, with number of 7 for Gyeonggi-do, 3 for Chungcheongbuk-do, 2 for Chungcheongnam-do, 13 for Jeollabuk-do, 5 for Jeollanam-do, 3 for Gyeongsangbuk-do, 11 for Gyeongsangnam-do, 1 for Daejeon, and 1 for Jeju-do. The physicochemical properties were as follows: pH 8.0, EC 11.6 mS/cm, SS 5,188 mg/L, TKN 847mg/L, ${{NH_4}^+}-N$ 317 mg/L, ${{NO_3}^-}-N$ 170 mg/L, Org-N 360 mg/L, TP 193 mg/L, and TK 2,557 mg/L. The total amount of NPK was 3,596 mg/L. The total amount of N-P-K was as follows: a number of 2 at 1,000-2,000 mg/L (4%), a number of 17 at 2,000-3,000mg/L (37%), a number of 11 at 3,000-4,000mg/L (24%), and a number of 16 at 4,000mg/L or more (35%). Thus, 41% of the mature liquid fertilizers were below the official standard of commercial fertilizer (livestock manure liquid fertilizer) (0.3% of the total amount of N-P-K). Most of the N-P-K total amount showed non-uniform characteristics of low nitrogen and low phosphoric acid due to the potassium concentration. The average heavy metal content in the matured liquid fertilizer was as follows: As, not detected; Cd, 0.01 mg/kg; Hg, not detected; Pb, 0.02 mg/kg; Cr, 0.14 mg/kg; Cu, 6.89 mg/kg; Ni, 0.44 mg/kg; and Zn, 20.70 mg/kg. Thus, the official standard of commercial fertilizer was satisfied in all categories, indicating a safe level.

Geochemical Study on Geological Groups of Stream Sediments in the Gwangju Area (광주지역 하상퇴적물에 대한 지질집단별 지구화학적 연구)

  • Kim, Jong-Kyun;Park, Yeung-Seog
    • Economic and Environmental Geology
    • /
    • v.38 no.4 s.173
    • /
    • pp.481-492
    • /
    • 2005
  • The purpose of this study is to determine geochemical characteristics for stream sediments in the Gwangju area. We collect the stream sediments samples by wet sieving along the primary channels and dry these samples slowly in the laboratory and grind to under 200mesh using an alumina mortar fur chemical analysis. Major elements, trace and rare earth elements are determined by XRF, ICP-AES and NAA analysis methods. For geochemical characteristics on geological groups of stream sediments, we separate geologic groups which are derived from Precambrian granite gneiss area, Jurassic granite area and Cretaceous Hwasun andesite area. Contents range of major elements for stream sediments in the Gwangju area are $SiO_2\;51.89\~70.63\;wt.\%,\;Al_2O-3\;12.91\~21.95\;wt.\%,\;Fe_2O_3\;3.22\~9.89\;wt.\%,\;K_2O\;1.85\~4.49\;wt.\%,\;MgO\;0.68\~2.90\;wt.\%,\;Na_2O\;0.48\~2.34\;wt.\%,\;CaO\;0.42\~6.72\;wt.\%,\;TiO_2\;0.53\~l.32\;wt.\%,\;P_2O_5\;0.06\~0.51\;wt.\%\;and\;MnO\;0.05\~0.69\;wt.\%.$ According to the AMF diagram for stream sediments and rocks, the stream sediments are plotted on boundary of tholeiitic series and calk alkaline series, which shows that contents of $Fe_2O_3$ are higher in stream sediments than rocks. According to variation diagram of $SiO_2$ versus $(K_2O+Na_2O),$ stream sediments are plotted on subalkaline series. Contents range of trace and rare earth elements for stream sediments in the Gwangiu area are Ba$590\~2170$ppm, Be1\~2.4$ppm, Cu$13\~79$ppm, Nb$20\~34$ppm, Ni$10\~50$ppm, Pb$17\~30$ppm, Sr$70\~1025$ ppm, V$42\~135$ppm, Zr$45\~171$ppm, Li$19\~77$ppm, Co$4.3\~19.3$ppm, Cr$28\~131$ppm, Cs$3.1\~17.6$ppm, Hf$5\~27.6$ppm, Rb$388\~202$ppm, Sb$0.2\~l.2$ ppm, Sc$6.4\~17$ppm, Zn$47\~389$ppm, Pa$8.8\~68.8$ppm, Ce$62\~272$ppm, Eu$1\~2.7$ppm and Yb$0.9\~6$ppm.

Fractionation and Pollution Index of Heavy Metals in the Sangdong Tungsten Mine Tailings (광미에 존재하는 중금속의 분획화와 오염도 평가)

  • Yang, Jae-E.;Kim, Hee-Joung;Jun, Sang-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.1
    • /
    • pp.33-41
    • /
    • 2001
  • Enormous volumes of mining wastes from the abandoned and closed mines are disposed without a proper treatment in the upper Okdong River basin at Southeastern part of Kangwon Province. Erosion of these wastes contaminates soil, surface water, and sediments with heavy metals. Objectives of this research were to fractionate heavy metals in the mine tailing stored in the Sangdong Tungsten tailing dams and to assess the potential pollution index of each metal fraction. Tailing samples were collected from tailing dams at different depth and analyzed for physical and chemical properties. pH of tailings ranged from 7.3 to 7.9. Contents of total N and organic matter were in the ranges of 3.2~5.5%, and 1.3~9.1%, respectively. Heavy metals in the tailings were higher in the newly constructed tailing dam than those in the old dam. Total concentrations of metals in the tailings were in the orders of Zn > Cu > Pb > Ni > Cd, exceeded the corrective action level of the Soil Environment Conservation Law and higher than the natural abundance levels reported from uncontaminated soils. Relative distribution of heavy metal fractions was residual > organic > reducible > carbonate > adsorbed, reversing the degree of metal bioavailability. Mobile fractions of metals were relatively small compared to the total concentrations. Distribution of metals in the tailing dam profiles was metal specific. Concentrations of Cu at the surface of tailing dams were higher than those at the bottom. Pollution index (PI) values of each fraction of metals were ranged from 4.27 to 8.51 based on total concentrations. PI values of mobile fractions were lower than those of immobile fractions. Results on metal fractions and PI values of the tailing samples indicate that tailing samples were contaminated with heavy metals and had potential to cause a detrimental effects on soil and water environment in the lower part of the stream. A prompt countermeasure to prevent surface of tailings in the dams from water and wind erosions is urgently needed.

  • PDF

Chemical Compositions of Sewage Sludges and Nitrogen Mineralization in Sewage Sludge Applied Soil (하수오니의 화학적 조성과 토양중 질소 무기화)

  • Park, Mi-Hyun;Lee, Seung-Heon;Yoo, Sun-Ho;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.2
    • /
    • pp.189-196
    • /
    • 1998
  • Swage sludge cakes produced from domestic wastewater treatment plants were collected from 21 different sites throughout Korea, and chemical properties of the sludge samples were determined. Inorganic nutrient contents did not indicate great differences among swage sludges from each sites, whereas the toxic heavy metal contents differed greatly. T-N, $NH_4{^+}-N$ and $NO_3{^-}-N$ contents from 21 sites sludges ranged 2.3-6.0, 291-4284, $1.4-58.8mg\;kg^{-1}$, respectively. Heavy metal (Cd, Cu, Pb and Zn) contents ranged 2.86-58.22, 144.0-5417.3, N.D.-943.5, and $N.D.-8,083mg\;kg^{-1}$, respectively. One of the sludges was treated to soils at rates of 12.5, 25, 50. and 100, $Mg\;ha^{-1}$ and incubated for 12 weeks to determine nitrogen materialization rate. Ammoniun nitrogen content decreased sharply at higher rates of sludge treatment up to 8 weeks after treatment and did not change much, while $NO_3{^-}$ increased at all treatment levels. The net amount of mineralized N of sludge treatment rates (12.5, 25, 50, and $100Mg\;ha^{-1}$) during 12weeks incubation were 189.0, 277.2, 303.8 and $376.6mg\;kg^{-1}$.

  • PDF

Rate of Sediment Accumulation and Geochemical Characteristics of Muddy Sediment in the Central Yellow Sea (황해 중앙부 해역 니질 퇴적물의 지화학적 특성 및 퇴적률)

  • 윤정수;김여상
    • The Korean Journal of Quaternary Research
    • /
    • v.16 no.1
    • /
    • pp.1-16
    • /
    • 2002
  • A total of 4 muddy sediment samples collected from the Central Yellow Sea were analyzed for chemical composition. The results are compared with the previously published Huanghe, Changjiang and Keum River geochemical data in order to understand provenance and sedimentation of fine-grained mud, and the sediment accumulation rates estimated. The sandy sediment facies is distributed in the eastern area, a patch of fine-grained mud exists in the western central prat, and the sandy mud and clay sedimentary facies shot. north to south zonal distribution in the central region. The content of calcium carbonate ranges from 2.8 to 10.5%, and its distributional trends to be more concentrated on the western muddy sediments near toward the China side rather than on the eastern sandy sediments. The accumulation rates obtained using Pb-210 geochronologies for the muddy sediments in the Central Yellow Sea showed ranges from 0.21 to 0.68 cm/yr or 0.176 to 0.714 g/$\textrm{cm}^2$. yr. The sedimentation rate from core CY96010 located in the eastern near side of Shandong Peninsula which is affected by the Huanghe River shows 0.68 cm/yr or 0.714 g/$\textrm{cm}^2$ . yr. The sediment cores CY96008 and CY96002 in the Central Yellow Sea, the estimated of sediment accumulation rates shows 0.21~0.23cm1yr or 0.176~0.220 9/$\textrm{cm}^2$.Vr respectively, which are much lower than above samples. These indicate that the muddy sediments in central area of the Yellow Sea may have received influence of the sediment discharge from the Huanghe River. The concentrations of Ca, Na, Sr, Ho, La, Tb, Ta and Ca/Ti ratio of the muddy sediments in the Central Yellow Sea are higher than those of the Changjiang sediments and lower than those of the Huanghe sediments. However, these element values showed similar concentration patterns than those of the Huanghe sediment. The element contents such as Fe, Ti, Nl, Co, Cr, Cu, Pb, Sc, Ce, Nd, Sm, Eu, Cd and Dy in the study area are higher than those of the Huanghe sediments and lower than the Changjiang River sediments, but these values showed close to resemblance content trends those of the Changjiang sediment. The concentration of Mn, K and Sr in sediments of the study area are similar to those of the Keum River and eastern Yellow Sea sediment. They are rich in Zn, Rb, Cd, U, Cs and Li than those of the other comparison legions. Therefore, the terrigenous materials sources of the muddy sediment in the Central Yellow Sea comes mainly from Huanghe River in the past and present, and also have party derived from the Changjiang and Keum River, while the biological deposit in this area are carried by the Yellow Sea Warm Current.

  • PDF

Analysis of Commercial Organic Compost Manufactured with Livestock Manure (국내 유통중인 가축분퇴비의 품질 특성)

  • Kim, Myung-Sook;Kim, Seok-Cheol;Park, Seong-Jin;Lee, Chang-Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.4
    • /
    • pp.21-29
    • /
    • 2018
  • The contents of total nitrogen(T-N), phosphate($T-P_2O_5$), and potash($T-K_2O$) are important factors to determine the application rate of the livestock compost to prevent nutrients accumulation and maintain their appropriate levels in arable lands. The concentrations of nutrient, organic matter, salt, water content, heavy metal in livestock compost in circulation were investigated with 659 samples from 2016 to 2017. In order to investigate the fluctuation nutrient contents of livestock composts with the same product name, 19 samples were collected and analyzed T-N, and $T-P_2O_5$, and $T-K_2O$ concentration during two years. The mean levels of T-N, $T-P_2O_5$, and $T-K_2O$ in livestock composts of from 2016 to 2017 were 1.73%, 1.88%, and 1.66%, respectively. The average contents of organic matter, water, and salt were 38.9%, 40.9%, and 1.2%, respectively. There were found that the maximum concentrations of Cr, Ni, Cu, and Zn in some livestock composts were exceeded the criteria of the official standard of commercial fertilizer. The maximum variation coefficient of T-N, $T-P_2O_5$ and $T-K_2O$ content of livestock composts was found to be 24%, 27%, and 50% on average, respectively. In order to manage the nutrients in agricultural soils, it will be reasonable that the error range of T-N and $T-P_2O_5$ content in livestock composts should be recommended to be 27% in mean as variation coefficient in case of displaying the nutrient element in liverstock compost.

A Study on the Stability and Sludge Energy Efficiency Evaluation of Torrefied Wood Flour Natural Material Based Coagulant (반탄화목분 천연재료 혼합응집제의 안정성 및 슬러지 에너지화 가능성 평가에 관한 연구)

  • PARK, Hae Keum;KANG, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.3
    • /
    • pp.271-282
    • /
    • 2020
  • Sewage treatment plants are social infrastructure of cities. The sewage distribution rate in Korea is reaching 94% based on the sewage statistics based in the year of 2017. In Korean sewage treatment plants, use of PAC (Poly Aluminum Chloride) accounts for 58%. It contains a large amount of impurities (heavy metal) according to the quality standards, however, there have been insufficient efforts to reinforce the standards or technically improve the quality, which resulted in secondary pollution problems from injecting excessive coagulant. Also, the increase in the use of chemicals is leading to the increases in the annual amount of sewage sludge generated in 2017 and the need to reuse sludge. As such, this study aims to verify the possibility of reusing sludge by evaluating the stability of heavy metals based on the injection of coagulant mixture during water treatment which uses the torrefield wood powder and natural materials, and evaluating the sedimentation and heating value of sewage sludge. As a result of analyzing heavy metals (Cr, Fe, Zn, Cu, Cd, As, Pb, and Ni) from the coagulant mixture and PAC (10%), Cr, Cd, Pb, Ni, and Hg were not detected. As for Zn, while its concentration notified in the quality standards for drinking water is 3 mg/L, only a small amount of 0.007 mg/L was detected in the coagulant mixture. Maximum amounts of over double amounts of Fe, Cu, and As were found with PAC (10%) compared to the coagulant mixture. Also, an analysis of sludge sedimentation found that the coagulant mixture showed a better performance of up to double the speed of the conventional coagulant, PAC (10%). The dry-basis lower heating value of sewage sludge produced by injecting the coagulant mixture was 3,378 kcal/kg, while that of sewage sludge generated due to PAC (10%) was 3,171 kcal/kg; although both coagulants met the requirements to be used as auxiliary fuel at thermal power plants, the coagulant mixture developed in this study could secure heating values 200 kal/kg higher than the counterpart. Therefore, utilization of the coagulant mixture for water treatment rather than PAC (10%) is expected to be more environmentally stable and effective, as it helps generating sludge with better stability against heavy metals, having a faster sludge sedimentation, and higher heating value.

Soil Environmental Characteristics Assessment of the Namsan Park in Seoul (서울남산의 토양환경특성 평가)

  • Kim, Ik-Soo;Lee, Jai-Young;Kim, Gyeo-Bung;Eom, Seok-Won
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.4
    • /
    • pp.22-29
    • /
    • 2008
  • To understand environmental characteristics and contamination assessment of the Namsan Park soil in Seoul, we divided the Namsan map into 33 sectors and sampled mixed soil in depth 0${\sim}$15 cm, in 5${\sim}$10 points at the sites. We analyzed soil samples collected at 21 sectors twice on May and September. The results were as follows. The hue color ranges of the Namsan soil were 2.5YR${\sim}$10YR, the value ranges were 1${\sim}$4, the water rates were 3.1${\sim}$22.3 and the Ignition losses were 3.4${\sim}$10.4%. The average concentration of Cu and Pb were determined 3.374 and 15.000 mg/kg, Cd and As showed very low level. The mean concentrations of Zn and Ni were showed 103.290 and 11.649 mg/kg and this amount is not different from the nationalwide mean in 2005. The mean pH showed 5.41. The Zn, Ni and Cd in the soil of the circular road of Namsan showed 1.33, 1.48, 1.46 times higher than the other sector of the Namsan soil. The corelation coefficient between water rate and ignition loss were 0.720 and the correlation coefficient between Cu and Pb, Cu and Zn showed 0.827, 0.694 respectively. There was weak corelationship between pH and Zn. The Uniformity coefficient (Uc) of all the survey sites was determined below 5 in the range of 1.5${\sim}$4.4.