Browse > Article

Geochemical Study on Geological Groups of Stream Sediments in the Gwangju Area  

Kim, Jong-Kyun (Dept. of Resource Engineering, Chosun University)
Park, Yeung-Seog (Dept. of Resource Engineering, Chosun University)
Publication Information
Economic and Environmental Geology / v.38, no.4, 2005 , pp. 481-492 More about this Journal
Abstract
The purpose of this study is to determine geochemical characteristics for stream sediments in the Gwangju area. We collect the stream sediments samples by wet sieving along the primary channels and dry these samples slowly in the laboratory and grind to under 200mesh using an alumina mortar fur chemical analysis. Major elements, trace and rare earth elements are determined by XRF, ICP-AES and NAA analysis methods. For geochemical characteristics on geological groups of stream sediments, we separate geologic groups which are derived from Precambrian granite gneiss area, Jurassic granite area and Cretaceous Hwasun andesite area. Contents range of major elements for stream sediments in the Gwangju area are $SiO_2\;51.89\~70.63\;wt.\%,\;Al_2O-3\;12.91\~21.95\;wt.\%,\;Fe_2O_3\;3.22\~9.89\;wt.\%,\;K_2O\;1.85\~4.49\;wt.\%,\;MgO\;0.68\~2.90\;wt.\%,\;Na_2O\;0.48\~2.34\;wt.\%,\;CaO\;0.42\~6.72\;wt.\%,\;TiO_2\;0.53\~l.32\;wt.\%,\;P_2O_5\;0.06\~0.51\;wt.\%\;and\;MnO\;0.05\~0.69\;wt.\%.$ According to the AMF diagram for stream sediments and rocks, the stream sediments are plotted on boundary of tholeiitic series and calk alkaline series, which shows that contents of $Fe_2O_3$ are higher in stream sediments than rocks. According to variation diagram of $SiO_2$ versus $(K_2O+Na_2O),$ stream sediments are plotted on subalkaline series. Contents range of trace and rare earth elements for stream sediments in the Gwangiu area are Ba$590\~2170$ppm, Be1\~2.4$ppm, Cu$13\~79$ppm, Nb$20\~34$ppm, Ni$10\~50$ppm, Pb$17\~30$ppm, Sr$70\~1025$ ppm, V$42\~135$ppm, Zr$45\~171$ppm, Li$19\~77$ppm, Co$4.3\~19.3$ppm, Cr$28\~131$ppm, Cs$3.1\~17.6$ppm, Hf$5\~27.6$ppm, Rb$388\~202$ppm, Sb$0.2\~l.2$ ppm, Sc$6.4\~17$ppm, Zn$47\~389$ppm, Pa$8.8\~68.8$ppm, Ce$62\~272$ppm, Eu$1\~2.7$ppm and Yb$0.9\~6$ppm.
Keywords
stream sediments; major & trace elements; geochemical characteristics; geological group; Gwangju area;
Citations & Related Records
연도 인용수 순위
  • Reference
1 박영석, 김종균, 한민수, 김용준, 장우석, 신성천 (2002) 장흥지역 1차 수계 하상퇴적물의 지질집단별 지구화학적 특성과 하천수에 대한 연구. 자원환경지질, 35권, p. 509-521
2 Darnley, A.G. (1990) International geochemical mapping: a new global project. Journal of Geochemical Exploration, v. 39, p. 1-14   DOI   ScienceOn
3 Darnley, A.G., Bjorklund, A., Bolviken, B., Gustavsson, N., Koval, RV, Plant, K.A., Steenfelt, A., Tauchid, M., Xie X„ Garrett, R.G. and Hall, G.E.M. (1995) A Global Geochemical Database for Environmental and Resource Management-Recommendations for International Geochemical Mapping: Final Report of IGCP Project 259, Earth Sciences 19, UNESCO Publishing, 122p
4 박영석, 장우석, 김종균 (2003) 구례지역 하상퇴적물의 지질집단별 자연배경치에 대한 연구. 자원환경지질, 36권, p. 275-284
5 FOREGS (Forum of European Geological Surveys) (1998) FOREGS Geochemical mapping field manual. Geological Survey of Filand Guide 47, p. 1-36
6 신성천, 염승준, 황상기 (2000) 지구화학적 재해 평가를 위한 지화학도 작성 및 기준치 설정. 지질재해 관측 및 방지기술 심포지엄, 2000년도 지질재해방재기술개발사업단.대한지질 공학회.대한지질공학회 공동학술발표회 논문집, p. 215-233
7 임연풍(1996) 의학환경 지구화학. 도서출판 춘광
8 홍승호, 윤욱 (1986) 송정도폭 지질보고서. 한국동력자원연구소
9 박영석, 노영배, 이창신 (1995) 광주-나주 지역에 분포하는 화강암류에 대한 Rb-Sr 동위 원소 연구. 한국지구과학회지, 16권, p. 247-261
10 전효택 (1991) 광물탐사를 위한 암석지구화학. 기전연구사, p. 23
11 UNESCO (1990) Geological Map of the World.(Scale 1:25,000,000; edited by O.Dottin.) Commission for the Geological Map of the World, United Nations Educational, Scientific and Cultural Organization, Paris
12 신성천, 황상기, 염승준, 이평구, 박성원, 이수재, 송윤구, 박영석, 김용준, 진명식, 홍영국, 이병대, 김연기, 이진수, 김용욱, 윤욱, 박덕원, 김인준, 이재호, 최상훈, 김건한, 양명권, 심상권, 박진태, 이길용, 윤윤열, 천상기, 문상원, 박석록, 유연희, 강민주 (2001) 전라남도 지구화학 지도책: 한국 지구화학 지도책(1:700, 000), 5집. 한국지질자원연구원, p. 70
13 염승준, 이평구, 강민주, 신성천, 유연희 (2004) 주암댐 집수유역 내 하상퇴적물의 중금속 오염현황 및 거동특성. 자원환경지질, 37권, p. 311-324
14 Davis, B.D. and Ballinger, R.C. (1990) Heavy metal soils in north Somerset, England, with special reference to contamination from base metal mining in the Men-dips. Environ. Geochem. Health, v. 12, p. 291-300   DOI   ScienceOn
15 Irvine, T.N. and Baragar, W.R.B. (1971) A guide to chemical classification of the common igneous rocks. Can. Jour. Earth Sci., v. 8, p. 523-548   DOI
16 Thronton, I. (1983) Applied Environmental Geochemistry. Academic Press, p.501
17 김용준, 박재봉, 박병규 (2002) 무등산 지역에 분포하는 화성암류의 암석화학. 암석학회지, 11권 p. 214-233
18 Levinson. A.A. (1974) Introduction to Exploration Geochemistry. Applied Publishing Ltd., Maywood. 614p
19 김규봉, 이병주, 황상구 (1990) 광주도폭 지질보고서. 한국동력자원연구소
20 이승구, 양동윤, 홍세선, 곽재호, 오근창 (2003) 회토류원소를 이용한 순창지역 섬진강 수 계내 하상퇴적물의 기원지 연구. 지질학회지, 39권, p.81-97
21 Taylor, S.R. and McLennan, S.M. (1995) The geochemical evolution of the continental crust. Rev. Geophys, v. 33, p. 241-265   DOI   ScienceOn
22 Merian, E.(ed) (1991) Metal and Their Compounds in the Environment: Occurrence, Analysis and Biological Relevance. VCH Verlagsgesellschaft, Weinheim, Germany, 1438p
23 Reimann, C. and Caritat, R (1998) Chemical Elements in the Environment. Springer-Verlag, 398p