• Title/Summary/Keyword: Ni/silicon wafer catalyst

Search Result 7, Processing Time 0.026 seconds

Kinetic Investigation of CO2 Reforming of CH4 over Ni Catalyst Deposited on Silicon Wafer Using Photoacoustic Spectroscopy

  • Yang, Jin-Hyuck;Kim, Ji-Woong;Cho, Young-Gil;Ju, Hong-Lyoul;Lee, Sung-Han;Choi, Joong-Gill
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1295-1300
    • /
    • 2010
  • The $CO_2-CH_4$ reaction catalyzed by Ni/silicon wafers was kinetically studied by using a photoacoustic technique. The catalytic reaction was performed at various partial pressures of $CO_2$ and $CH_4$ (50 Torr total pressure of $CO_2/CH_4/N_2$) in the temperature range of 500 - $650^{\circ}C$ in a static reactor system. The photoacoustic signal that varied with the $CO_2$ concentration during the catalytic reaction was recorded as a function of time. Under the reaction conditions, the $CO_2$ photoacoustic measurements showed the as-prepared Ni thin film sample to be inactive for the reaction, while the $CO_2/CH_4$ reactions carried out in the presence of the sample pre-treated in $H_2$ at $600^{\circ}C$ were associated with significant time-dependent changes in the $CO_2$ photoacoustic signal. The rate of $CO_2$ disappearance was measured from the $CO_2$ photoacoustic signal data in the early reaction period of 50 - 150 sec to obtain precise kinetic data. The apparent activation energy for $CO_2$ consumption was determined to be 6.9 kcal/mol from the $CO_2$ disappearance rates. The partial reaction orders, determined from the $CO_2$ disappearance rates measured at various $PCO{_2}'S$ and $PCH{_4}'S$ at $600^{\circ}C$, were determined to be 0.33 for $CH_4$ and 0.63 for $CO_2$, respectively. Kinetic data obtained in these measurements were compared with previous works and were discussed to construct a catalytic reaction mechanism for the $CO_2-CH_4$ reaction over Ni/silicon wafer at low pressures.

Growth of Carbon Nanotubes Depending on Etching Condition of Ni-catalytic Layer (Ni 박막 촉매 Etching 조건에 따른 탄소나노튜브 성장)

  • 정성희;장건익;류호진
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.9
    • /
    • pp.751-756
    • /
    • 2001
  • Carbon nanotubes(CNTs) was successfully grown on Ni coated silicon wafer substrate by PECVD technique(Plasma Enhanced Chemical Vapor Deposition). As a catalyst, Ni thin film of thickness ranging from 15∼30nm was prepared by electron beam evaporator system. In order to find the find the optimum growth condition, initially two different types of gas mixtures such as C$_2$H$_2$-NH$_3$ and C$_2$H$_2$-NH$_3$-Ar were systematically investigated by adjusting the gas mixing ratio in temperature of 600$^{\circ}C$ under 0.4 torr. The diameter of the grown CNTs was 40∼200nm. The diameter of the CNTs increases with increasing the Ni particles size. TEM images clearly demonstrated synthesized nanotubes to be multiwalled.

  • PDF

Growth Characteristics of Amorphous Silicon Oxide Nanowires Synthesized via Annealing of Ni/SiO2/Si Substrates

  • Cho, Kwon-Koo;Ha, Jong-Keun;Kim, Ki-Won;Ryu, Kwang-Sun;Kim, Hye-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4371-4376
    • /
    • 2011
  • In this work, we investigate the growth behavior of silicon oxide nanowires via a solid-liquid-solid process. Silicon oxide nanowires were synthesized at $1000^{\circ}C$ in an Ar and $H_2$ mixed gas. A pre-oxidized silicon wafer and a nickel film are used as the substrate and catalyst, respectively. We propose two distinctive growth modes for the silicon oxide nanowires that both act as a unique solid-liquid-solid growth process. We named the two growth mechanisms "grounded-growth" and "branched-growth" modes to characterize their unique solid-liquid-solid growth behavior. The two growth modes were classified by the generation site of the nanowires. The grounded-growth mode in which the grown nanowires are generated from the substrate and the branchedgrowth mode where the nanowires are grown from the side of the previously grown nanowires or at the metal catalyst drop attached at the tip of the nanowire stem.

Silicon wire array fabrication for energy device (실리콘 와이어 어레이 및 에너지 소자 응용)

  • Kim, Jae-Hyun;Baek, Seung-Ho;Kim, Kang-Pil;Woo, Sung-Ho;Lyu, Hong-Kun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.440-440
    • /
    • 2009
  • Semiconductor nanowires offer exciting possibilities as components of solar cells and have already found applications as active elements in organic, dye-sensitized, quantum-dot sensitized, liquid-junction, and inorganic solid-state devices. Among many semiconductors, silicon is by far the dominant material used for worldwide photovoltaic energy conversion and solar cell manufacture. For silicon wire to be used for solar device, well aligned wire arrays need to be fabricated vertically or horizontally. Macroscopic silicon wire arrays suitable for photovoltaic applications have been commonly grown by the vapor-liquid-solid (VLS) process using metal catalysts such as Au, Ni, Pt, Cu. In the case, the impurity issues inside wire originated from metal catalyst are inevitable, leading to lowering the efficiency of solar cell. To escape from the problem, the wires of purity of wafer are the best for high efficiency of photovoltaic device. The fabrication of wire arrays by the electrochemical etching of silicon wafer with photolithography can solve the contamination of metal catalyst. In this presentation, we introduce silicon wire arrays by electrochemical etching method and then fabrication methods of radial p-n junction wire array solar cell and the various merits compared with conventional silicon solar cells.

  • PDF

Catalytic growth of carbon nanotubes using plasma enhanced chemical vapor deposition(PECVD) (플라즈마 화학 증착법을 이용한 탄소나노튜브의 촉매 성장에 관한 연구)

  • 정성회;장건익
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.935-938
    • /
    • 2001
  • Carbon nanotubes(CNTs) was successfully grown on Ni coated silicon wafer substrate by applying PECVD technique(Plasma Enhanced Chemical Vapor Deposition). As a catalyst, Ni thin film of thickness ranging from 15∼30nm was prepared by electron beam evaporator method. In order to find the optimum growth condition, the type of the gas mixture such as C$_2$H$_2$-NH$_3$was systematically investigated by adjusting the gas mixing ratio in temperature of 600$^{\circ}C$ under the pressure of 0.4 torr. The diameter of the grown CNTs was 40∼150nm. As NH$_3$etching time increased the diameters of the nanotubes decreased whereas the density of nanotubes increased. TEM images clearly demonstrated synthesized nanotubes was multiwalled. We investigated electrical properties for the application of FED.

  • PDF

The Vertical Growth of CNTs by DC Bias-Assisted PECVD and Their Field Emission Properties. (플라즈마 화학 기상 증착법에서 DC bias가 인가된 탄소나노튜브의 수직성장과 전계방출 특성)

  • 정성회;김광식;장건익;류호진
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.4
    • /
    • pp.367-372
    • /
    • 2002
  • The vertically well-aligned carbon nanotubes(CNTs) were successfully grown on Ni coated silicon wafer substrate by DC bias-assisted PECVD(Plasma Enhanced Chemical Vapor Deposition). As a catalyst, Ni thin film of thickness ranging from 15~30nm was prepared by electron beam evaporator method. In order to find the optimum growth condition, the type of gas mixture such as $C_2H_2-NH_3$ was systematically investigated by adjusting the gas mixing ratio at $570^{\circ}C$ under 0.4Torr. The diameter of the grown CNTs was 40~200nm and the diameter of the CNTs increased with increasing the Ni particles size. TEM images clearly showed carbon nanotubes to be multiwalled. The measured turn-on field was $3.9V/\mu\textrm{m}$ and an emission current of $1.4{\times}10^4A/\textrm{cm}^2$ was $7V/\mu\textrm{m}$. The CNTs grown by bias-assisted PECVD was able to demonstrate high quality in terms of vertical alignment, crystallization of graphite and the processing technique at low temperature of $570^{\circ}C$ and this can be applied for the emitter tip of FEDs.

Direct synthesis mechanism of amorphous $SiO_x$ nanowires from Ni/Si substrate (Ni/Si 기판을 사용하여 성장시킨 비결정질 $SiO_x$ 나노 와이어의 성장 메커니즘)

  • Song, W.Y.;Shin, T.I.;Lee, H.J.;Kim, H.;Kim, S.W.;Yoon, D.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.6
    • /
    • pp.256-259
    • /
    • 2006
  • The amorphous $SiO_x$ nanowires were synthesized by the vapor phase epitaxy (VPE) method. $SiO_x$ nanowires were formed on silicon wafer of temperatures ranged from $800{\sim}1100^{\circ}C$ and nickel thin film was used as a catalyst for the growth of nanowires. A vapor-liquid-solid (VLS) mechanism is responsible for the catalyst-assisted amorphous $SiO_x$ nanowires synthesis in this experiment. The SEM images showed cotton-like nanostructure of free standing $SiO_x$ nanowires with the length of more than about $10{\mu}m$. The $SiO_x$ nanowires were confirmed amorphous structure by TEM analysis and EDX spectrum reveals that the nanowires consist of Si and O.