• Title/Summary/Keyword: Newton-Raphson

Search Result 588, Processing Time 0.024 seconds

Softening and hardening tuned mass dampers

  • Khalili, Mohammad Khalil;Badamchi, Karim
    • Earthquakes and Structures
    • /
    • v.14 no.5
    • /
    • pp.459-465
    • /
    • 2018
  • Reducing response of buildings during earthquakes by mass dampers, has been examined in many articles and books. Nowadays, many researchers are trying to realistically examine this type of dampers by new methods of performance. In this paper, for the better study of tuned mass damper (TMD), two schematic models are presented for a passive TMD with softening stiffness (softening TMD) and a passive TMD with hardening stiffness (hardening TMD). Then by modeling and analysis of the damper on a single degree of freedom (SDOF) structure and an 11-story steel building, the dampers performance was evaluated. State space was used for damper and structure modeling and to solve nonlinear equations, the Newton-Raphson method was used. The results show that when the structure is subjected to the Chi-Chi earthquake, response of the sixth floor in the system without TMD reduces 54.0% in comparison to the structure with softening TMD. This percentage of reduction for hardening TMD is 55.0%. Also for the Tabas earthquake, reduction in the RMS acceleration of the sixth floor in the system with hardening TMD is 96.2% more than the structure without TMD. This percentage of reduction for hardening TMD is 96.3%.

Distributed Load Flow Algorithm for Power Distribution System under Strategic Business Unit (독립사업부제를 대비한 분산형 배전용 조류계산 알고리즘)

  • Kim, D.H.;Norbekov, Nodir;Lee, H.C.;Yoon, Y.T.;Lee, S.S.;Lee, S.K.
    • Proceedings of the KIEE Conference
    • /
    • 2006.11a
    • /
    • pp.33-35
    • /
    • 2006
  • 배전 독립사업부제 도입 및 분산전원의 출현으로 배전계통은 계획 및 운영에 있어서도 변화가 일어 날 것이다. 예로, 기존의 방사상 구조의 배전 계통은 분산 전원의 출현으로 부분적인 그물망 구조로 변형될 수 있으며, 사업 구역이나 사업 지역으로 나누어진 배전계통에서는 서로 다른 관리 체제 하에서 운영이 필요하기 때문에 각 배전회사간의 정보 공유 문제가 발생할 수도 있다. 이러한 문제를 해결하기 위해 분화된 배전 계통의 특성을 고려하여 송전계통과 같이 전체 시스템에 대해 조류 계산하지 않고 배전 계통을 몇 개의 영역으로 나누고 다른 영역과의 경계 정보만을 이용하여 자신의 영역에 대한 조류 계산을 수행하는 알고리즘을 제안하였다. 이런 특성을 최대한 반영한 각 영역의 조류 계산은 분산 전원의 투입으로 인한 양방향 조류가 발생하게 되므로 그물망 구조로 된 구역과 기존의 방사상 구조로 된 영역으로 구분할 수 있다. 본 논문에서는 구역 특성에 맞고 배전 계통에 적용 가능한 알고리즘으로 먼저 분리 구역별 조류 계산을 수행한 후 그 다음 경계치 교환으로 배전 계통 전체의 조류 계산을 수행하는 알고리즘을 제안한다. 즉 방사상 구조 영역에서는 back/forward sweep 방법으로 수행하고 그물망 구조 영역에서는 Full Newton-Raphson 방법으로 구분하여 영역의 특성에 맞게 수행하였다.

  • PDF

A Numerical Method to Calculate Drainage Time in Large Transmission Pipelines Filter (대구경 관로의 배수시간 산정을 위한 수치해석 기법)

  • Shin, Byoung-Ho;Choi, Doo-Yong;Jeong, Kwansue
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.6
    • /
    • pp.511-519
    • /
    • 2017
  • Multi-regional water supply system, which installed for supplying multiple water demands, is characterized by large-sized, long-distance, tree-type layout. This system is vulnerable to long-standing service interruption when a pipe breaks is occurred. In this study, a numerical method is proposed to calculate drainage time that directly affects time of service interruption. To begin with, governing equations are formulated to embed the delayed drainage effect by the friction loss, and to resolve complicated connection of pipelines, which are derived from the continuity and energy equations. The nonlinear hydraulic equations are solved by using explicit time integration method and the Newton-Raphson method. The developed model is verified by comparing the result with analytical solution. Furthermore, the model's applicability is validated by the examples of pipelines in serial, in parallel, and complex layout. Finally, the model is utilized to suggest an appropriate actions to reduce the deviation of draining time in the C transmission line of the B multi-regional water supply system.

Frictional Loss Analysis of a Reciprocating Compressor with Thrust Ball Bearing (스러스트 볼 베어링이 적용된 왕복동형 압축기의 마찰손실 해석)

  • Kim, Tae-Jong
    • Tribology and Lubricants
    • /
    • v.27 no.2
    • /
    • pp.101-108
    • /
    • 2011
  • In this paper, a study on the frictional losses and dynamic behaviors of a reciprocating compression mechanism used in small refrigeration compressor is performed. In the problem formulation of the compressor dynamics, the viscous frictional force between piston and cylinder wall is considered in order to determine the coupled dynamic behaviors of piston and crankshaft supported on a thrust ball bearing. The solutions of the equations of motion of the reciprocating mechanism along with the time dependent Reynolds equations for the lubricating film between piston and cylinder wall and lubricant films of the journal bearings are obtained simultaneously. The hydrodynamic forces of journal bearings are calculated using finite bearing model and G$\hat{u}$m-bel boundary condition. And, a Newton-Raphson procedure was employed in solving the nonlinear equations of piston and crankshaft with a thrust ball bearing. The results explored the effects of design parameters on the frictional losses and dynamic stability of the compression mechanism.

Finite Element Analysis of Thermoforming Process for Axisymmetric System (축대칭형계 열성형공정의 수치모사연구)

  • 이재욱
    • The Korean Journal of Rheology
    • /
    • v.8 no.3_4
    • /
    • pp.215-225
    • /
    • 1996
  • 평판형의 열가소성 수지를 유리전이온도 이상으로 가열한 다음 압력을 가함으로써 원하는 형상의 제품을 성형하는 열성형공정은 대상 수지가 큰 변형을 일으킬 뿐만 아니라 비선형적 거동을 보이게 된다. 따라서 수지의 변형거동 예측과 최적성형조건의 설정에 많은 어려움과 시행착오를 거치게 되는 바, 열성형 공정의 최적화를 위한 연구의 일환으로 원형 평판위 수지를 대상으로 수지의 부풀림 거동과 이에 따른 두께 분포를 예측할수 있는유한요 소법의 수치모사 알고리듬을 개발하고자 하였다. Piola-Kirchhoff 응력 텐서와 Green 변형 텐서 및 lagrangian 변형 텐서를 사용하여 평판상의 응력-변형에 대한 비선형의 에너지 수 지식을 수립하고 Newton-Raphson 반복수렴법을 이용하여 근사적으로 해석하였으며 수지의 유변학적 구성방정식으로는 neo-Hookean 모델, Mooney-Rivlin 모델 및 Ogden 모델등의 초탄성 모델을 사용하여 그결과를 비교하였다. 수치모사에는 두께가 매우 얇기 때문에 두께 방향의 응력변화를 무시할수 있는 membrane 가정을 도입한 2차원적 해석과 두께 방향의 응력 변화를 고려하는 3차원적 해석을 모두 수행하고 그 차이를 비교하였으며 3차원적 해석 의 경우에는 penalty법을 이용하여 비 압축성을 만족하였다. 일차적으로 내압을 받는 두꺼 운 원통계에 대한 수치모사 해석을 수행하고 완전해와 비교함으로써 개발된 수치모사 알고 리듬의 열성형 공정에의 적용 타당성을 검증하였으며 이를 이용하여 원형 평판의 자유부풀 림거동을 예측한 결과 Treloar 등의 실험결과와 잘 부합함을 확인하였다. 또 간단한 형상의 금형이 있는 경우와 반지름 방향으로의 온도변화에 따른 수지의 변형거동을 해석함으로써 실제 열성형 공정에서 요구되고 있는 성형품의 두께 분포를 균일하게 하기 위한 방안을 제 시하였다.

  • PDF

Dynamic Analysis of Mooring Dolphin System Considering Soil Properties (지반의 강성특성을 고려한 지반-돌핀구조계의 동적해석)

  • Yi, Jin-Hak;Oh, Se-Boong;Yun, Chung-Bang;Hong, Sup;Kim, Jin-Ha
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.3 s.29
    • /
    • pp.19-30
    • /
    • 1998
  • In this paper, the dynamic analysis of a dolphin system for mooring a floating structure such as barge mounted plant is studied. The characteristics of the soil-pile system are simplified by a set of equivalent spring elements at the mudline. To evaluate the equivalent spring constants, the finite difference method is used. Since the characteristics of the soil-pile system are nonlinear in case of soft foundation, the nonlinear dynamic analysis technique is needed. The Newmark $beta$ method incorporating the modified Newton-Raphson method(initial stiffness method) is used. A numerical analysis is performed on two mooring dolphin systems on soft foundation and rock foundation. In case of the rock foundation, the characteristics are found to be nearly linear, so the linear dynamic analysis may be sufficient to consider the foundation effect. But in case of soft foundation, the non-linearity of the foundation appears to be very signigicant, so the nonlinear dynamic analysis si needed.

  • PDF

Adaptive maximum power point tracking control of wind turbine system based on wind speed estimation

  • Hyun, Jong-Ho;Kim, Kyung-Youn
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.460-475
    • /
    • 2018
  • In the variable-speed wind energy system, to achieve maximum power point tracking (MPPT), the wind turbine should run close to its optimal angular speed according to the wind speed. Non-linear control methods that consider the dynamic behavior of wind speed are generally used to provide maximum power and improved efficiency. In this perspective, the mechanical power is estimated using Kalman filter. And then, from the estimated mechanical power, the wind speed is estimated with Newton-Raphson method to achieve maximum power without anemometer. However, the blade shape and air density get changed with time and the generator efficiency is also degraded. This results in incorrect estimation of wind speed and MPPT. It causes not only the power loss but also incorrect wind resource assessment of site. In this paper, the adaptive maximum power point tracking control algorithm for wind turbine system based on the estimation of wind speed is proposed. The proposed method applies correction factor to wind turbine system to have accurate wind speed estimation for exact MPPT. The proposed method is validated with numerical simulations and the results show an improved performance.

A Study on the Stability Boundaries for Single Layer Latticed Domes and Arch under Combined Loads (조합하중를 받는 단층 래티스 돔과 아치의 안정경계에 관한 연구)

  • Han, Sang-Eul;Lee, Sang-Ju;Lee, Kap-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.3 s.13
    • /
    • pp.103-109
    • /
    • 2004
  • The lowest load when the equilibrium condition becomes to be unstable is defined as the buckling load. The primary objective of this paper is to be analyse stability boundaries for star dome under combined loads and is to investigate the iteration diagram under the independent loading parameter. In numerical procedure of the geometrically nonlinear problems, Arc Length Method and Newton-Raphson iteration method is used to find accurate critical point(bifurcation point and limit point). In this paper independent loading vector is combined as proportional value and star dome was used as numerical analysis model to find stability boundary among load parameters and many other models as multi-star dome and arch were studied. Through this study we can find the type of buckling mode and the value of buckling load.

  • PDF

Incremental Displacement Estimation Algorithm for Real-Time Structural Displacement Monitoring (실시간 구조물 변위 모니터링을 위한 증분형 변위 측정 알고리즘)

  • Jeon, Hae-Min;Shin, Jae-Uk;Myeong, Wan-Cheol;Myung, Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.6
    • /
    • pp.579-583
    • /
    • 2012
  • The purpose of this paper is to suggest IDE (Incremental Displacement Estimation) algorithm for the previously proposed visually servoed paired structured light system. The system is composed of two sides facing with each other, each with one or two lasers with a 2-DOF manipulator, a camera, and a screen. The 6-DOF displacement between two sides can be estimated by calculating the positions of the projected laser beams and rotation angles of the manipulators. In the previous study, Newton-Raphson or EKF (Extended Kalman Filter) has been used as an estimation algorithm. Although the various experimental tests have validated the performance of the system and estimation algorithms, the computation time is relatively long since aforementioned algorithms are iterative methods. Therefore, in this paper, a non-iterative incremental displacement estimation algorithm which updates the previously estimated displacement with a difference of the previous and the current observed data is introduced. To verify the performance of the algorithm, experimental tests have been performed. The results show that the proposed non-iterative algorithm estimates the displacement with the same level of accuracy compared to the EKF with multiple iterations with significantly less computation time.

Post-buckling analysis of Timoshenko beams with temperature-dependent physical properties under uniform thermal loading

  • Akbas, Seref Doguscan;Kocaturk, Turgut
    • Structural Engineering and Mechanics
    • /
    • v.44 no.1
    • /
    • pp.109-125
    • /
    • 2012
  • Post-buckling behavior of Timoshenko beams subjected to uniform temperature rising with temperature dependent physical properties are studied in this paper by using the total Lagrangian Timoshenko beam element approximation. The beam is clamped at both ends. In the case of beams with immovable ends, temperature rise causes compressible forces end therefore buckling and post-buckling phenomena occurs. It is known that post-buckling problems are geometrically nonlinear problems. Also, the material properties (Young's modulus, coefficient of thermal expansion, yield stress) are temperature dependent: That is the coefficients of the governing equations are not constant in this study. This situation suggests the physical nonlinearity of the problem. Hence, the considered problem is both geometrically and physically nonlinear. The considered highly non-linear problem is solved considering full geometric non-linearity by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. The beams considered in numerical examples are made of Austenitic Stainless Steel (316). The convergence studies are made. In this study, the difference between temperature dependent and independent physical properties are investigated in detail in post-buckling case. The relationships between deflections, thermal post-buckling configuration, critical buckling temperature, maximum stresses of the beams and temperature rising are illustrated in detail in post-buckling case.