• Title/Summary/Keyword: Newton-Raphson

Search Result 589, Processing Time 0.025 seconds

Statistical Modeling of Learning Curves with Binary Response Data (이항 반응 자료에 대한 학습곡선의 모형화)

  • Lee, Seul-Ji;Park, Man-Sik
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.3
    • /
    • pp.433-450
    • /
    • 2012
  • As a worker performs a certain operation repeatedly, he tends to become familiar with the job and complete it in a very short time. That means that the efficiency is improved due to his accumulated knowledge, experience and skill in regards to the operation. Investing time in an output is reduced by repeating any operation. This phenomenon is referred to as the learning curve effect. A learning curve is a graphical representation of the changing rate of learning. According to previous literature, learning curve effects are determined by subjective pre-assigned factors. In this study, we propose a new statistical model to clarify the learning curve effect by means of a basic cumulative distribution function. This work mainly focuses on the statistical modeling of binary data. We employ the Newton-Raphson method for the estimation and Delta method for the construction of confidence intervals. We also perform a real data analysis.

A Study on the Determination and Characteristics of Stress Intensity Factors and Stress Singularities for V-notched Cracks in Dissimilar Materials (이종재료간 V-노치균열의 응력특이성과 응력강도계수의 특성 및 결정에 관한 연구)

  • 조상봉;윤성관
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1890-1899
    • /
    • 1992
  • In bonded structures, there are V-notched cracks in dissimilar materials and the stress concentration of these V-notched cracks causes to occur interface cracks in dissimilar materials Therefore the strength evaluation of V-notched cracks in dissimliar materials seems to be important. The stress fields of a V-notched cracks is known as .sigma.$_{ij}$ .var. K $r_{p-1}$,where K is the stress intensity factor and p-1 is the stress singularity. When the distance, r, approaches to 0 at the stress fields of V-notched cracks, the stresses become infinites by two more stress singularities of p-1 and p-1 is no more -0.5. Stress singularities and stress intensity factors for V-notched cracks in dissimilar materials are treated and discussed. The Newton-Raphson method which is an efficient numerical method for solving a non-linear equation is used for solving stress sigularities. And stress intensity factors are solved by the collocation method using the Newton-Raphson and least squares method. The effects of stress intensity factors and stress singularities on stress fields of V-notched cracks in dissimilar materials are studied by using photoelasic isochromatic frings patterns obtained from computer graphics.s.

A Study on Development of a New Algorithm to Solve Load Flow for Distribution Systems (배전계통조류계산을 위한 새로운 알고리즘에 관한 연구)

  • Moon, Young-Hyun;Yoo, Sung-Young;Choi, Byoung-Kon;Ha, Bock-Nam;Lee, Joong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.918-922
    • /
    • 1998
  • With the development of industry, the qualitical advancement of power is needed. Since it is placed in the end step of power system, the fault at the distribution system causes some users blackout directly. So if the fault occurs, quick restoration is very important subject and, for the reason, induction of the distribution automation system is now being progressed briskly. For the quick restoration of the faulted distribution system, the load shedding of the blackout-area must be followed, and the other problems like the shedded load, faulted voltage and the rest may cause other accident. Accordingly load shedding must be based on the precise calculation technique during the distribution system load flow(dist flow) calculation. In these days because of its superior convergence characteristic the Newton-Raphson method is most widely used. The number of buses in the distribution system amounts to thousands, and if the fault occurs at the distribution system, the speed for the dist flow calculation is to be improved to apply to the On-Line system. However, Newton-Raphson method takes much time relatively because it must calculate the Jacobian matrix and inverse matrix at every iteration, and in the case of huge load, the equation is hard to converge. In this thesis. matrix equation is used to make algebraical expression and then to solve load flow equation and to modify above defects. Then the complex matrix is divided into real part and imaginary part to keep sparcity. As a result time needed for calculation diminished. Application of mentioned algorithm to 302 bus, 700 bus, 1004 bus system led to almost identical result got by Newton-Raphson method and showed constant convergence characteristic. The effect of time reduction showed 88.2%, 86.4%, 85.1% at each case of 302 bus, 700 bus system 86.4%, and 1004 bus system.

  • PDF

Local Nonlinear Static Analysis via Static Condensation (강성응축기법을 이용한 국부 비선형 정적 해석)

  • Shin, Han-Seop;Oh, Min-Han;Boo, Seung-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.1
    • /
    • pp.193-200
    • /
    • 2021
  • In this study, an analysis technique using static condensation is proposed for an efficient local nonlinear static analysis. The static condensation method is a model reduction method based on the degrees of freedom, and the analysis model is divided into a target part and a condensed part to be omitted. In this study, the nonlinear and linear parts were designated to the target and the omitted parts, respectively, and both the stiffness matrix and load vector corresponding to the linear part were condensed into the nonlinear part. After model condensation, the reduced model comprising the stiffness matrix and the load vector for the nonlinear part is constructed, and only this reduced model was updated through the Newton-Raphson iteration for an efficient nonlinear analysis. Finally, the efficiency and reliability of the proposed analysis technique were presented by applying it to various numerical examples.

Closing Analysis of Symmetric Steel Cable-stayed Bridges and Estimation of Construction Error (대칭형 강 사장교의 폐합해석과 시공오차의 예측)

  • Lee, Min Kwon;Lee, Hae Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.55-65
    • /
    • 2006
  • This paper presents the closing analysis of a symmetric steel cable-stayed bridge erected by a free cantilever method. Two independent structural systems are formed before the closing procedure of a bridge is performed, and thus the compatibility conditions for vertical displacement and rotational angle are not satisfied at the closing section without the application of proper sectional forces. Since, however, it is usually impossible to apply sectional forces at the closing section, the compatibility conditions should be satisfied by proper external forces that can be actually applicable to a bridge. Unstrained lengths of selected cables and the pull-up force of a derrick crane are adjusted to satisfy nonlinear compatibility conditions, which are solved iteratively by the Newton-Raphson method. Cable members are modeled by the elastic catenary cable elements, and towers and main girders are discretized by linear 3-D frame elements. The sensitivities of displacement with respect to the unstrained lengths of selected cables and the pull-up force of the derrick crane are evaluated by the direct differentiation of the equilibrium equation. A Monte-Carlo simulation approach is proposed to estimate expected construction errors for a given confidence level. The proposed method is applied to the second Jindo Grand Bridge to demonstrate its validity and effectiveness.

A new method for solving the inverse kinematics for 6 D.O.F. manipulator (6자유도 매니퓰레이터 역기구학 해를 구하기 위한 새로운 방법)

  • 정용욱;류재춘;박종국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.557-562
    • /
    • 1991
  • In this paper, we present new methods for solving the inverse kinematics associated with 6 degree of freedoms manipulator by the numerical method. This method will be based on tracking stability of special nonlinear dynamical systems, and differs from the typical techniques based by the Newton-Gauss or Newton-Raphson method for solving nonlinear equations. This simulation results show that the new method is solving the inverse kinematics of PUMA 560 without the derivative of a given task space trajectories.

  • PDF

Development of a general purpose software package for robot simulation (범용 로보트 시뮬레이션 팩키지 개발에 관한 연구)

  • 강대희;주광혁;김학표
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.5-8
    • /
    • 1986
  • The simulation algorithm for all kinds of robots with arbitrary degrees of freedom which are combined with revolute joints or prismatic joints, or combinations was studied and implemented. This simulation package is composed of trajectory planning routine, control routine, kinematics routine using Newton-Raphson method, dynamics based on Newton-Euler method with four-bar linkage analysis, input routine and output routine.

  • PDF

EXTENSION OF FACTORING LIKELIHOOD APPROACH TO NON-MONOTONE MISSING DATA

  • Kim, Jae-Kwang
    • Journal of the Korean Statistical Society
    • /
    • v.33 no.4
    • /
    • pp.401-410
    • /
    • 2004
  • We address the problem of parameter estimation in multivariate distributions under ignorable non-monotone missing data. The factoring likelihood method for monotone missing data, termed by Rubin (1974), is extended to a more general case of non-monotone missing data. The proposed method is algebraically equivalent to the Newton-Raphson method for the observed likelihood, but avoids the burden of computing the first and the second partial derivatives of the observed likelihood. Instead, the maximum likelihood estimates and their information matrices for each partition of the data set are computed separately and combined naturally using the generalized least squares method.

Analysis of Line and Circular Contact Elastohydrodynamic Lubrication with Multigrid Multilevel Method (다중 격자 다중 차원법을 이용한 선접촉 또는 점접촉 탄성 유체 윤활 해석)

  • 장시열
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.323-330
    • /
    • 1999
  • The conventional analysis for the numerical computation of fluid film thickness with elastic deformation of contact region. is performed by Newton-Rephson method for its 18st convergence characteristics. However, both high load and relatively low sliding velocity frequently make it impossible for Newton-Rahpson method to get both converged and stable solutions. In particular, this method cannot provide converged Solution under the condition of high load above 1.0 GPa which frequently occurs in line contact of EHL problem. Multigird multi-level method for the solver of non-linear partial differential equation including solid deformation is preferred to Newton-Rshpson method for better convergence and stability and is applied to line contact EHL behavior in this study.

  • PDF