• Title/Summary/Keyword: Newton-Method

Search Result 1,017, Processing Time 0.033 seconds

The study on Lightness and Performance Improvement of Universal Code (BL-beta code) for Real-time Compressed Data Transferring in IoT Device (IoT 장비에 있어서 실시간 데이터 압축 전송을 위한 BL-beta 유니버설 코드의 경량화, 고속화 연구)

  • Jung-Hoon, Kim
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.6
    • /
    • pp.492-505
    • /
    • 2022
  • This study is a study on the results of improving the logic to effectively transmit and decode compressed data in real time by improving the encoding and decoding performance of BL-beta codes that can be used for lossless real-time transmission of IoT sensing data. The encoding process of BL-beta code includes log function, exponential function, division and square root operation, etc., which have relatively high computational burden. To improve them, using bit operation, binary number pattern analysis, and initial value setting of Newton-Raphson method using bit pattern, a new regularity that can quickly encode and decode data into BL-beta code was discovered, and by applying this, the encoding speed of the algorithm was improved by an average of 24.8% and the decoding speed by an average of 5.3% compared to previous study.

Dynamic Interaction of Track and Train System on Open Gap by Rail Breaks (레일 파단시 장대레일 개구부에서의 궤도-차량 동적상호작용)

  • Kang, Yun Suk;Kang, Young Jong;Yang, Shin Chu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6D
    • /
    • pp.895-904
    • /
    • 2008
  • CWR (Continuous Welded Rail) may be broken when a temperature drop below the neutral temperature changes in axial force, causing tensile fracture and rail gap, in winter. Rail-breaks may lead to the damage of the rail and wheel by dynamic load, and the reduction of running safety if not detected before the passage of a train. In this study, the track and train coupled model with open gap for dynamic interaction analysis, is proposed. Linear track and train systems is coupled by the nonlinear Herzian contact spring and the complete system matrices of total track-train system is constructed. And the interaction phenomenon considering open gap, was defined by assigning the irregularity functions between the two sides of a gap. Time history analysis, which have an iteration scheme such as $Newmark-{\beta}$ method based on Modified Newton-Raphson methods, was performed to solve the nonlinear equation. Finally, numerical studies are performed to assess the effect of various parameters of system, apply to various speeds, open gap size and the support stiffness of rail.

Preliminary Study on the Development of a Performance Based Design Platform of Vertical Breakwater against Seismic Activity - Centering on the Weakened Shear Modulus of Soil as Shear Waves Go On (직립식 방파제 성능기반 내진 설계 Platform 개발을 위한 기초연구 - 전단파 횟수 누적에 따른 지반 강도 감소를 중심으로)

  • Choi, Jin Gyu;Cho, Yong Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.6
    • /
    • pp.306-318
    • /
    • 2018
  • In order to evaluate the seismic capacity of massive vertical type breakwaters which have intensively been deployed along the coast of South Korea over the last two decades, we carry out the preliminary numerical simulation against the PoHang, GyeongJu, Hachinohe 1, Hachinohe 2, Ofunato, and artificial seismic waves based on the measured time series of ground acceleration. Numerical result shows that significant sliding can be resulted in once non-negligible portion of seismic energy is shifted toward the longer period during its propagation process toward the ground surface in a form of shear wave. It is well known that during these propagation process, shear waves due to the seismic activity would be amplified, and non-negligible portion of seismic energy be shifted toward the longer period. Among these, the shift of seismic energy toward the longer period is induced by the viscosity and internal friction intrinsic in the soil. On the other hand, the amplification of shear waves can be attributed to the fact that the shear modulus is getting smaller toward the ground surface following the descending effective stress toward the ground surface. And the weakened intensity of soil as the number of attacking shear waves are accumulated can also contribute these phenomenon (Das, 1993). In this rationale, we constitute the numerical model using the model by Hardin and Drnevich (1972) for the weakened shear modulus as shear waves go on, and shear wave equation, in the numerical integration of which $Newmark-{\beta}$ method and Modified Newton-Raphson method are evoked to take nonlinear stress-strain relationship into account. It is shown that the numerical model proposed in this study could duplicate the well known features of seismic shear waves such as that a great deal of probability mass is shifted toward the larger amplitude and longer period when shear waves propagate toward the ground surface.

On the Use of Modal Derivatives for Reduced Order Modeling of a Geometrically Nonlinear Beam (모드 미분을 이용한 기하비선형 보의 축소 모델)

  • Jeong, Yong-Min;Kim, Jun-Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.4
    • /
    • pp.329-334
    • /
    • 2017
  • The structures, which are made up with the huge number of degrees-of-freedom and the assembly of substructures, have a great complexity. In order to increase the computational efficiency, the analysis models have to be simplified. Many substructuring techniques have been developed to simplify large-scale engineering problems. The techniques are very powerful for solving nonlinear problems which require many iterative calculations. In this paper, a modal derivatives-based model order reduction method, which is able to capture the stretching-bending coupling behavior in geometrically nonlinear systems, is adopted and investigated for its performance evaluation. The quadratic terms in nonlinear beam theory, such as Green-Lagrange strains, can be explained by the modal derivatives. They can be obtained by taking the modal directional derivatives of eigenmodes and form the second order terms of modal reduction basis. The method proposed is then applied to a co-rotational finite element formulation that is well-suited for geometrically nonlinear problems. Numerical results reveal that the end-shortening effect is very important, in which a conventional modal reduction method does not work unless the full model is used. It is demonstrated that the modal derivative approach yields the best compromised result and is very promising for substructuring large-scale geometrically nonlinear problems.

Natural Space and Cognitional Space in Modern (근대의 자연 공간과 인식 공간)

  • Kang, Dong-soo
    • Journal of Korean Philosophical Society
    • /
    • v.116
    • /
    • pp.1-31
    • /
    • 2010
  • This Article studies a meaning of geometrical-mathematical spatial idea in the source of modern theories of space. Modern theories of space elucidated a relation of human and space through the geometrical terms; point, line, plane and extension etc. Descartes and Newton identified space as a natural realty, Leibniz and Kant elucidated space as a subjective idea or form. It is the result of modern spatial theories that space is lied nearly in human. In the meaning of natural space, space is empirically unfolded with a shape of measuring in front of human's eyes. In the meaning of cognitional space, space is a method or subjective cognitional form that human understands nature and constitutes world. Modern theories of space would be divided into four patterns. In Newton's theory space is absolutely prior to things. In Leibniz' theory space is a co-existence order of Monads. In Descartes's theory space is identified with extension. In Kant's theory space is cognitional form of subject. They all are confronted with each other in the source of space. In their confrontation they reflected on the relation of human and space in their own standpoint. We classify their particularly differential concepts of space into natural space and cognitional space. And then we analyze a difference of spatial meanings, and then investigate foundations of meaning of modern theories of space. On the one hand they are become to the source of alienation of human from space. But on the other they are contributed to get space familiar with human through a wakening for the correlation of human and space. The natural space indicates that with measurable shape space is extended really in front of human's experiential eyes. But the cognitional space elucidates that space is only a subjective idea or form with which human understands nature and constructs world. In the former it is embossed that space is independent to human, and is able to be measured and to be treated according to natural raws. In the latter it is evidenced that space is not separated to human, and that space is not without human, and a correlation existed between human and space. Humanist ideal is declared in them. It was a declaration of human sovereignty to nature. But this declaration is caused to alienate human beings from space.

Nutrient Requirements of Exercising Swamp Buffalo, Bubalus bubalis, from Materials Balance and In Vivo Body Composition by the Body Density Method. I. Aspects of Energy and Protein Metabolism in Working Cows

  • Mahardika, IG.;Sastradipradja, D.;Sutardi, T.;Sumadi, IK.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.5
    • /
    • pp.605-612
    • /
    • 2000
  • Four young swamp buffalo cows of similar age ranging in weight between 280 to 380 kg and trained to do physical work were used in a study to determine energy and protein requirements for draught using a $4{\times}4$ Latin square designed experiment. The experiment consisted of field trials employing 4 levels of work load, e.g. no work as control, and loads amounting 450 to 500 Newton (N) pulled continuously for 1, 2 and 3 h daily for 14 consecutive days. Cows were fed king grass (Penisetum purpuroides) ad libitum and were subjected to materials balance trials. Body composition was estimated in vivo by the body density method and daily energy expenditure (EE) was calculated from ME minus retained energy (RE). The results show that EE while not working ($EE_{resting}$) was $0.42kgW^{0.75}MJ/d$ and maintenance ME ($ME_m$) was $0.37kgW^{0.75}MJ/d$. ME requirement increased to 1.65 times maintenance for the work of 3 hours. The energy expended for doing exercise ($E_{exercise}$) was 9.56, 20.0 and 25.86 MJ/cow for treatments 1, 2 and 3 II, respectively. Fat retention was absent in all groups of working cows, but protein retention was only negative for cows undertaking 3 h work. The relationship between $E_{exercise}$ (MJ), work load (F, kN), work duration (t, h) and body mass (W, kg) was found to be: $E_{exercise}=(0.003F^{1.43}t^{0.93})/W^{0.09}MJ$. The maintenance requirement for digestible protein was $2.51kgW^{0.75}g/d$, whereas digestible protein for growth ($DP_{growth}$) and for work ($DP_{work}$) followed the equations: $DP_{growth}=[(258+1.25W^{0.75}){\Delta}Wkg/d]g$ and $DP_{work}=[12.59e^{0.95t}]g$, respectively The coefficients a, b and c for the calculation of $E_{exercise}$ components according to the Lawrence equation were found to be 2.56 J/kgW.m, 5.2 J/kg load carried.m and 0.29, respectively, thus efficiencies to convert ME into work were 0, 16.09, 27.3 and 32.44% for control, 1, 2 and 3 h/d work, respectively. ME and DP requirements for a 250 to 400 kg working buffalo cow allowing to growth up to 0.5 kg/d are presented.

Kinematic and Dynamic Analyses of Human Arm Motion

  • Kim, Junghee;Cho, Sungho;Lee, Choongho;Han, Jaewoong;Hwang, Heon
    • Journal of Biosystems Engineering
    • /
    • v.38 no.2
    • /
    • pp.138-148
    • /
    • 2013
  • Purpose: Determining an appropriate path is a top priority in order for a robot to maneuver in a dynamically efficient way especially in a pick-and-place task. In a non-standardized work environment, current robot arm executes its motion based on the kinematic displacements of joint variables, though resulting motion is not dynamically optimal. In this research we suggest analyzing and applying motion patterns of the human arm as an alternative to perform near optimum motion trajectory for arbitrary pick-and-place tasks. Methods: Since the motion of a human arm is very complicated and diverse, it was simplified into two links: one from the shoulder to the elbow, and the other from the elbow to the hand. Motion patterns were then divided into horizontal and vertical components and further analyzed using kinematic and dynamic methods. The kinematic analysis was performed based on the D-H parameters and the dynamic analysis was carried out to calculate various parameters such as velocity, acceleration, torque, and energy using the Newton-Euler equation of motion and Lagrange's equation. In an attempt to assess the efficacy of the analyzed human motion pattern it was compared to the virtual motion pattern created by the joint interpolation method. Results: To demonstrate the efficacy of the human arm motion mechanical and dynamical analyses were performed, followed by the comparison with the virtual robot motion path that was created by the joint interpolation method. Consequently, the human arm was observed to be in motion while the elbow was bent. In return this contributed to the increase of the manipulability and decrease of gravity and torque being exerted on the elbow. In addition, the energy required for the motion decreased. Such phenomenon was more apparent under vertical motion than horizontal motion patterns, and in shorter paths than in longer ones. Thus, one can minimize the abrasion of joints by lowering the stress applied to the bones, muscles, and joints. From the perspectives of energy and durability, the robot arm will be able to utilize its motor most effectively by adopting the motion pattern of human arm. Conclusions: By applying the motion pattern of human arm to the robot arm motion, increase in efficiency and durability is expected, which will eventually produce robots capable of moving in an energy-efficient manner.

Additive hazards models for interval-censored semi-competing risks data with missing intermediate events (결측되었거나 구간중도절단된 중간사건을 가진 준경쟁적위험 자료에 대한 가산위험모형)

  • Kim, Jayoun;Kim, Jinheum
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.4
    • /
    • pp.539-553
    • /
    • 2017
  • We propose a multi-state model to analyze semi-competing risks data with interval-censored or missing intermediate events. This model is an extension of the three states of the illness-death model: healthy, disease, and dead. The 'diseased' state can be considered as the intermediate event. Two more states are added into the illness-death model to incorporate the missing events, which are caused by a loss of follow-up before the end of a study. One of them is a state of the lost-to-follow-up (LTF), and the other is an unobservable state that represents an intermediate event experienced after the occurrence of LTF. Given covariates, we employ the Lin and Ying additive hazards model with log-normal frailty and construct a conditional likelihood to estimate transition intensities between states in the multi-state model. A marginalization of the full likelihood is completed using adaptive importance sampling, and the optimal solution of the regression parameters is achieved through an iterative quasi-Newton algorithm. Simulation studies are performed to investigate the finite-sample performance of the proposed estimation method in terms of empirical coverage probability of true regression parameters. Our proposed method is also illustrated with a dataset adapted from Helmer et al. (2001).

The Ride Attraction Design of Theme Park (테마파크의 라이드 어트랙션 디자인)

  • 이호숭
    • Archives of design research
    • /
    • v.15 no.3
    • /
    • pp.5-14
    • /
    • 2002
  • The amusement design of a large amusement park, including theme park, largely consists of attraction design, the main facilities, and auxiliary facilities design. The purpose of this study was to discuss the physical motion characteristics of major ride, a recently highlighted representative ride attraction, modern people's thirst for stronger stimuli, and some of the right future directions for amusement design. In theme park, there is an growing trend for rides, especially major rides, to be more thrilling, and Newton's Law motion is basically applied. The rides we can often see provides a thrilling experience that is different from that offered by vehicles we use everyday, due to a variety of speed change, namely of acceleration. Every entertainment facilities, including ride attractions, are externally cutting edge with the use of new technology. but internally, poor theme or concept not only makes it difficult to function properly as attraction but poses a severe threat to theme park survival itself. Theme park will be able to exist as a comprehensive entertainment entity, when attractions are designed to have a perfect harmony among story, method and environment with cultural universality.

  • PDF

Internal Dose Assessment of Worker by Radioactive Aerosol Generated During Mechanical Cutting of Radioactive Concrete (원전 방사성 콘크리트 기계적 절단의 방사성 에어로졸에 대한 작업자 내부피폭선량 평가)

  • Park, Jihye;Yang, Wonseok;Chae, Nakkyu;Lee, Minho;Choi, Sungyeol
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.2
    • /
    • pp.157-167
    • /
    • 2020
  • Removing radioactive concrete is crucial in the decommissioning of nuclear power plants. However, this process generates radioactive aerosols, exposing workers to radiation. Although large amounts of radioactive concrete are generated during decommissioning, studies on the internal exposure of workers to radioactive aerosols generated from the cutting of radioactive concrete are very limited. In this study, therefore, we calculate the internal radiation doses of workers exposed to radioactive aerosols during activities such as drilling and cutting of radioactive concrete, using previous research data. The electrical-mobility-equivalent diameter measured in a previous study was converted to aerodynamic diameter using the Newton-Raphson method. Furthermore, the specific activity of each nuclide in radioactive concrete 10 years after nuclear power plants are shut down was calculated using the ORIGEN code. Eventually, we calculated the committed effective dose for each nuclide using the IMBA software. The maximum effective dose of 152Eu constituted 83.09% of the total dose; moreover, the five highest-ranked elements (152Eu, 154Eu, 60Co, 239Pu, 55Fe) constituted 99.63%. Therefore, we postulate that these major elements could be measured first for rapid radiation exposure management of workers involved in decommissioning of nuclear power plants, even if all radioactive elements in concrete are not considered.