• Title/Summary/Keyword: Newton-Kantorovich hypothesis

Search Result 7, Processing Time 0.023 seconds

WEAK SUFFICIENT CONVERGENCE CONDITIONS AND APPLICATIONS FOR NEWTON METHODS

  • Argyros, Ioannis-K.
    • Journal of applied mathematics & informatics
    • /
    • v.16 no.1_2
    • /
    • pp.1-17
    • /
    • 2004
  • The famous Newton-Kantorovich hypothesis has been used for a long time as a sufficient condition for the convergence of Newton method to a solution of an equation in connection with the Lipschitz continuity of the Frechet-derivative of the operator involved. Using Lipschitz and center-Lipschitz conditions we show that the Newton-Kantorovich hypothesis is weakened. The error bounds obtained under our semilocal convergence result are finer and the information on the location of the solution more precise than the corresponding ones given by the dominating Newton-Kantorovich theorem, and under the same hypotheses/computational cost, since the evaluation of the Lipschitz also requires the evaluation of the center-Lipschitz constant. In the case of local convergence we obtain a larger convergence radius than before. This observation is important in computational mathematics and can be used in connection to projection methods and in the construction of optimum mesh independence refinement strategies.

ON THE NEWTON-KANTOROVICH AND MIRANDA THEOREMS

  • Argyros, Ioannis K.
    • East Asian mathematical journal
    • /
    • v.24 no.3
    • /
    • pp.289-293
    • /
    • 2008
  • We recently showed in [5] a semilocal convergence theorem that guarantees convergence of Newton's method to a locally unique solution of a nonlinear equation under hypotheses weaker than those of the Newton-Kantorovich theorem [7]. Here, we first weaken Miranda's theorem [1], [9], [10], which is a generalization of the intermediate value theorem. Then, we show that operators satisfying the weakened Newton-Kantorovich conditions satisfy those of the weakened Miranda’s theorem.

  • PDF

ON THE APPLICABILITY OF TWO NEWTON METHODS FOR SOLVING EQUATIONS IN BANACH SPACE

  • Argyros, Ioannis K.
    • Journal of applied mathematics & informatics
    • /
    • v.6 no.2
    • /
    • pp.369-378
    • /
    • 1999
  • In This study we examine the applicability of Newton's method and the modified Newton's method for a, pp.oximating a lo-cally unique solution of a nonlinear equation in a Banach space. We assume that the newton-Kantorovich hypothesis for Newton's method is violated but the corresponding condition for the modified Newton method holds. Under these conditions there is no guaran-tee that Newton's method starting from the same initial guess as the modified Newton's method converges. Hence it seems that we must always use the modified Newton method under these condi-tions. However we provide a numerical example to demonstrate that in practice this may not be a good decision.

EXTENDING THE APPLICATION OF THE SHADOWING LEMMA FOR OPERATORS WITH CHAOTIC BEHAVIOUR

  • Argyros, Ioannis K.
    • East Asian mathematical journal
    • /
    • v.27 no.5
    • /
    • pp.521-525
    • /
    • 2011
  • We use a weaker version of the celebrated Newton-Kantorovich theorem [3] reported by us in [1] to find solutions of discrete dynamical systems involving operators with chaotic behavior. Our results are obtained by extending the application of the shadowing lemma [4], and are given under the same computational cost as before [4]-[6].

CONVERGENCE OF THE RELAXED NEWTON'S METHOD

  • Argyros, Ioannis Konstantinos;Gutierrez, Jose Manuel;Magrenan, Angel Alberto;Romero, Natalia
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.1
    • /
    • pp.137-162
    • /
    • 2014
  • In this work we study the local and semilocal convergence of the relaxed Newton's method, that is Newton's method with a relaxation parameter 0 < ${\lambda}$ < 2. We give a Kantorovich-like theorem that can be applied for operators defined between two Banach spaces. In fact, we obtain the recurrent sequence that majorizes the one given by the method and we characterize its convergence by a result that involves the relaxation parameter ${\lambda}$. We use a new technique that allows us on the one hand to generalize and on the other hand to extend the applicability of the result given initially by Kantorovich for ${\lambda}=1$.

A REFINED THEOREM CONCERNING THE CONDITIONING OF SEMIDEFINITE PROGRAMS

  • Argyros, Ioannis K.
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.305-312
    • /
    • 2007
  • Using a weaker version of the Newton-Kantorovich theorem [6] given by us in [3], we show how to refine the results given in [8] dealing with the analyzing of the effect of small perturbations in problem data on the solution. The new results are obtained under weaker hypotheses and the same computational cost as in [8].

ON THE "TERRA INCOGNITA" FOR THE NEWTON-KANTROVICH METHOD WITH APPLICATIONS

  • Argyros, Ioannis Konstantinos;Cho, Yeol Je;George, Santhosh
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.2
    • /
    • pp.251-266
    • /
    • 2014
  • In this paper, we use Newton's method to approximate a locally unique solution of an equation in Banach spaces and introduce recurrent functions to provide a weaker semilocal convergence analysis for Newton's method than before [1]-[13], in some interesting cases, provided that the Fr$\acute{e}$chet-derivative of the operator involved is p-H$\ddot{o}$lder continuous (p${\in}$(0, 1]). Numerical examples involving two boundary value problems are also provided.