• 제목/요약/키워드: Newton methods

검색결과 252건 처리시간 0.022초

수치등각사상의 Theodorsen방정식해법에 관한 연구 (A Study on Methods for Solving Theodorsen Equation in Numerical Conformal Mapping)

  • 송은지
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2010년도 추계학술발표대회
    • /
    • pp.1839-1842
    • /
    • 2010
  • 등각사상은 함수론의 기본적인 문제로 2차원 Laplace방정식이 나타나는 열전도, 정전(靜電) potential, 유체의 문제에 이용되는 등 공학이나 물리학에서 그 응용분야가 넓다. 수치등각사상의 목적은 보다 빠르고, 보다 정확하며, 보다 적용범위가 넓은 계산법을 연구하는데 있다. 단위원 내부로부터 Jordan 영역 내부로의 등각사상을 구하는 문제는 비선형 방정식인 Theodorsen 방정식을 푸는 것으로 귀결된다. Theodorsen 방정식에 관해서는 여러 가지 수치해법이 제안되어 있는데 본 논문에서는 그 중 SOR 법인 Niethammer와 Newton법인 Vertgeim의 방법을 다루어 비교, 분석하였다. 이 2가지 방법을 실제 계산기상에 실현시켜 수치실험을 하여 그 유효성을 비교, 분석한 결과 난이도가 낮은 문제에서는 Niethammer의 방법이 난이도가 높은 문제에서는 Vertgeim이 제안한 방법이 유효함을 알게 되었다.

Estimation algorithms of the model parameters of robotic manipulators

  • Ha, In-Joong;Ko, Myoung-Sam;Kwon, Seok-Ki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1987년도 한국자동제어학술회의논문집(한일합동학술편); 한국과학기술대학, 충남; 16-17 Oct. 1987
    • /
    • pp.932-938
    • /
    • 1987
  • The dynamic equations of robotic manipulators can be derived from either Newton-Euler equation or Lagrangian equation. Model parameters which appear in the resulting dynamic equation are the nonlinear functions of both the inertial parameters and the geometric parameters of robotic manipulators. The identification of the model parameters is important for advanced robot control. In the previous methods for the identification of the model parameters, the geometric parameters are required to be predetermined, or the robotic manipulators are required to follow some special motions. In this paper, we propose an approach to the identification of the model parameters, in which prior knowledge of the geometric parameters is not necessary. We show that the estimation equation for the model parameters can be formulated in an upper block triangular form. Utilizing the special structures, we obtain a simplified least-square estimation algorithm for the model parameter identification. To illustrate the practical use of our method, a 4DOF SCARA robot is examined.

  • PDF

A study on estimating the interlayer boundary of the subsurface using a artificial neural network with electrical impedance tomography

  • Sharma, Sunam Kumar;Khambampati, Anil Kumar;Kim, Kyung Youn
    • 전기전자학회논문지
    • /
    • 제25권4호
    • /
    • pp.650-663
    • /
    • 2021
  • Subsurface topology estimation is an important factor in the geophysical survey. Electrical impedance tomography is one of the popular methods used for subsurface imaging. The EIT inverse problem is highly nonlinear and ill-posed; therefore, reconstructed conductivity distribution suffers from low spatial resolution. The subsurface region can be approximated as piece-wise separate regions with constant conductivity in each region; therefore, the conductivity estimation problem is transformed to estimate the shape and location of the layer boundary interface. Each layer interface boundary is treated as an open boundary that is described using front points. The subsurface domain contains multi-layers with very complex configurations, and, in such situations, conventional methods such as the modified Newton Raphson method fail to provide the desired solution. Therefore, in this work, we have implemented a 7-layer artificial neural network (ANN) as an inverse problem algorithm to estimate the front points that describe the multi-layer interface boundaries. An ANN model consisting of input, output, and five fully connected hidden layers are trained for interlayer boundary reconstruction using training data that consists of pairs of voltage measurements of the subsurface domain with three-layer configuration and the corresponding front points of interface boundaries. The results from the proposed ANN model are compared with the gravitational search algorithm (GSA) for interlayer boundary estimation, and the results show that ANN is successful in estimating the layer boundaries with good accuracy.

NCW 환경에서 C4I 체계 전투력 상승효과 평가 알고리즘 : 기술 및 인적 요소 고려 (A Combat Effectiveness Evaluation Algorithm Considering Technical and Human Factors in C4I System)

  • 정환식;박건우;이재영;이상훈
    • 지능정보연구
    • /
    • 제16권2호
    • /
    • pp.55-72
    • /
    • 2010
  • 최근, NCW에 적합한 C4I 체계의 전투력 상승효과 평가의 필요성이 제기되고 있다. 기존의연구는 체계 자체에 중점을 두었으며, 인적 요소를 중요한 요소로 고려하지 않았다. 따라서, C4I 체계의 전투력 상승효과 평가 시 기술 및 인적 요소를 고려하여 평가하는 것이 필요한 시점이라고 할 수 있다. 이에 본 연구에서는 E-TechMan(A Combat Effectiveness Evaluation Algorithm Considering Technical and Human Factors in C4I System)이라 불리는 전투력 상승효과 평가 알고리즘을 제안한다. E-TechMan 알고리즘은 합동화력체계(Joint Fire Operating System-Korea)에 적용되어 전투력 상승효과를 평가해보았다. 또한, 기존의 연구방법인 C2 이론 및 고전 역학에 의한 결과와 비교를 하였다. 본 연구는 인적요소에 의한 영향을 반영함으로써 기존의 연구보다 현실적인 전투력 상승효과 결과를 제시했다는데 가치가 있다.

블록의 탑재 안전성을 위한 초기 평형 자세 탐색 방법 연구 (A Study on the Methods for Finding Initial Equilibrium Position of a Lifting Block for the Safe Erection)

  • 전도현;노명일;함승호;이혜원
    • 대한조선학회논문집
    • /
    • 제55권4호
    • /
    • pp.297-305
    • /
    • 2018
  • In a shipyard, block lifting is an important process in the production of ships and offshore structures. Block lifting is a sensitive process because lifting blocks have to be erected with exact positions and orientations. If we use a numerical method for the process, it is important to find tensions of wires and positions of equalizers to maintain the initial equilibrium position of the block. At this time, equations of motion of the block should be solved to calculate the initial equilibrium position of the block. Because the solving technique changes according to the number of equalizers, a suitable equation for the corresponding problem is required. In this study, three types of equations are proposed to find the initial equilibrium position of the block according to the number of equalizers. The Newton-Raphson's method is used to solve nonlinear simultaneous equations and the optimization method is used to determine the appropriate solution to the undetermined problem. To evaluate the applicability of the proposed methods, the dynamic simulations are performed using the tensions calculated from the proposed methods, and the results are discussed. The results show that the proposed methods can be effectively used to determine initial equilibrium position of the block for the block lifting.

Ultimate strength estimation of composite plates under combined in-plane and lateral pressure loads using two different numerical methods

  • Ghannadpour, S.A.M.;Shakeri, M.;Barvaj, A. Kurkaani
    • Steel and Composite Structures
    • /
    • 제29권6호
    • /
    • pp.785-802
    • /
    • 2018
  • In this paper, two different computational methods, called Rayleigh-Ritz and collocation are developed to estimate the ultimate strength of composite plates. Progressive damage behavior of moderately thick composite laminated plates is studied under in-plane compressive load and uniform lateral pressure. The formulations of both methods are based on the concept of the principle of minimum potential energy. First order shear deformation theory and the assumption of large deflections are used to develop the equilibrium equations of laminated plates. Therefore, Newton-Raphson technique will be used to solve the obtained system of nonlinear algebraic equations. In Rayleigh-Ritz method, two degradation models called complete and region degradation models are used to estimate the degradation zone around the failure location. In the second method, a new energy based collocation technique is introduced in which the domain of the plate is discretized into the Legendre-Gauss-Lobatto points. In this new method, in addition to the two previous models, the new model named node degradation model will also be used in which the material properties of the area just around the failed node are reduced. To predict the failure location, Hashin failure criteria have been used and the corresponding material properties of the failed zone are reduced instantaneously. Approximation of the displacement fields is performed by suitable harmonic functions in the Rayleigh-Ritz method and by Legendre basis functions (LBFs) in the second method. Finally, the results will be calculated and discussions will be conducted on the methods.

얇은막대 배치작업에 대한 N-R 과 EKF 방법을 이용하여 개발한 로봇 비젼 제어알고리즘의 평가 (Evaluation of Two Robot Vision Control Algorithms Developed Based on N-R and EKF Methods for Slender Bar Placement)

  • 손재경;장완식;홍성문
    • 대한기계학회논문집A
    • /
    • 제37권4호
    • /
    • pp.447-459
    • /
    • 2013
  • 실제 산업현장에서 비젼 시스템을 적용하기에는 로봇 비젼 제어알고리즘의 기구학모델의 정확도, 로봇이 움직이는 동안 카메라 초점거리와 방위에 대한 보정, 3 차원 물리적 좌표에서 2 차원 카메라 좌표로의 매핑에 대한 이해 등 해결해야 할 많은 문제점들이 있다. 본 논문에 제안된 비젼 시스템 모델은 카메라와 로봇 사이의 상대적인 위치가 알려지지 않아도 제어가 가능하고, 카메라 보정 문제를 해결하기 위해 6 개의 카메라 매개변수를 가지는 비젼 시스템 모델을 제시하였으며, 이를 이용하여 로봇 비젼 제어알고리즘 개발에 N-R 방법과 EKF 방법을 적용하였다. 최종적으로 N-R 과 EKF 방법에 의하여 개발된 로봇 비젼 제어 알고리즘의 위치 정밀도와 데이터 처리 시간을 얇은 막대 배치작업을 수행하여 비교하였다.

Incremental displacement estimation of structures using paired structured light

  • Jeon, Haemin;Shin, Jae-Uk;Myung, Hyun
    • Smart Structures and Systems
    • /
    • 제9권3호
    • /
    • pp.273-286
    • /
    • 2012
  • As civil structures are exposed to various external loads, it is essential to assess the structural condition, especially the structural displacement, in every moment. Therefore, a visually servoed paired structured light system was proposed in the previous study. The proposed system is composed of two screens facing with each other, each with a camera, a screen, and one or two lasers controlled by a 2-DOF manipulator. The 6-DOF displacement can be calculated from the positions of three projected laser beams and the rotation angles of the manipulators. In the estimation process, one of well-known iterative methods such as Newton-Raphson or extended Kalman filter (EKF) was used for each measurement. Although the proposed system with the aforementioned algorithms estimates the displacement with high accuracy, it takes relatively long computation time. Therefore, an incremental displacement estimation (IDE) algorithm which updates the previously estimated displacement based on the difference between the previous and the current observed data is newly proposed. To validate the performance of the proposed algorithm, simulations and experiments are performed. The results show that the proposed algorithm significantly reduces the computation time with the same level of accuracy compared to the EKF with multiple iterations.

Axisymmetric large deflection analysis of fully and partially loaded shallow spherical shells

  • Altekin, Murat;Yukseler, Receb F.
    • Structural Engineering and Mechanics
    • /
    • 제47권4호
    • /
    • pp.559-573
    • /
    • 2013
  • Geometrically non-linear axisymmetric bending of a shallow spherical shell with a clamped or a simply supported edge under axisymmetric load was investigated numerically. The partial load was introduced by the Heaviside step function, and the solution was obtained by the finite difference and the Newton-Raphson methods. The thickness of the shell was considered to be uniform and the material was assumed to be homogeneous and isotropic. Sensitivity analysis was made for three geometrical parameters. The accuracy of the algorithm was checked by comparing the central deflection, the radial membrane stress at the edge, or the transverse shear force with the solutions of plates and shells in the literature and good agreement was obtained. The main findings of the study can be outlined as follows: (i) If the shell is fully loaded the central deflection of a clamped shell is larger than that of a simply supported shell provided that the shell is not very shallow, (ii) if the shell is partially loaded the central deflection of the shell is sensitive to the parameters of thickness, depth, and partial loading but the influence of the boundary conditions is negligible.

형상충전기법과 세분화된 유동장 재생성기법을 이용한 자유표면을 가진 비압축성 점성유동의 수치적 모사 (Numerical Analysis of Incompressible Viscous Flow with Free Surface Using Pattern Filling and Refined Flow Field Regeneration Techniques)

  • 정준호;양동렬
    • 대한기계학회논문집A
    • /
    • 제20권3호
    • /
    • pp.933-944
    • /
    • 1996
  • In this paper, two new techniques, the pattern filling and the refined flow field regeneration, based on the finite element method and Eulerian mesh advancement approach have been developed to analyze incompressible viscous flow with free surfaces. The gorerning equation for flow analysis is Navier-Stokes equation including inertia and gravity effects. The penalty and Newton-Raphson methods are used effectively for finite element formulation. The flow front surface and the volume inflow rate are calculated using the pattern filling technique to select an adequate pattern among five filling patterns at each quadrilateral control volume. By the refined flow field regeneration technique, the new flow field which renders better prediction in flow surface shape is generated and the velocity field at the flow front part is calculated more exactly. Using the new thchniques to be developed, the dam-breaking problem has been analyzed to predict flow phenomenon of fluid and the predicted front positions versus time have been compared with the reported experimental result.