• Title/Summary/Keyword: Newton method

Search Result 1,015, Processing Time 0.026 seconds

Evaluation of Stiffness Matrix of 3-Dimensional Elements for Isotropic and Composite Plates (등방성 및 복합재 플레이트용 16절점 요소의 강성행렬 계산)

  • 윤태혁;김정운;이재복
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2640-2652
    • /
    • 1994
  • The stiffness of 6-node isotropic element is stiffer than that of 8-node isotropic element of same configuration. This phenomenon was called 'Relative Stiffness Stiffening Phenomenon'. In this paper, an equation of sampling point modification which correct this phenomenon was derived for the composite plate, as well as an equation for an isotropic plate. The relative stiffness stiffening phenomena of an isotropic plate element could be corrected by modifying Gauss sampling points in the numerical integration of stiffness matrix. This technique could also be successfully applied to the static analyses of composite plate modeled by the 3-dimensional 16-node elements. We predicted theoretical errors of stiffness versus the number of layers that result from the reduction of numerical integration order. These errors coincide very well with the actual errors of stiffness. Therefore, we can choose full integration of reduced integration based upon the permissible error criterion and the number of layers by using the thoretically predicted error.

A CAD-based Software for the Simulation of Lifting and Turnover of Ship Block (선박 블록의 이동 및 반전 시뮬레이션 프로그램 개발)

  • Lee, Soo-Beom;Shin, Sang-Beom;Kwak, Byung-Man
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.714-719
    • /
    • 2000
  • In this paper, an application program is made to simulate the behavior of a ship block under various crane works and to generate data of lu9 reactions and wire tensions. The program is based on a CAD program, Pro/ENGINEER. A ship is composed of more than 100 ship blocks. In order to lift, move, turn, or put a ship block at a convenient location fur assembling, workers in a shipyard use cranes, wires, and lugs temporarily attached to the block. In the procedure of lifting and turning a ship block with a crane, it is important to find suitable lug points and wires to do the handling efficiently and prevent accidents. Evaluation of forces in lugs and wires is necessary, but the problem is rather complex due to nonlinearity and nonuniqueness. In the present development, the nonlinear system of equations for quasi-static equilibriums is derived and a Newton type solution method is adopted to solve the system. The importance of initial estimates to the solution is illustrated and two approaches are utilized and compared. With the program developed, users can assign lug points on the CAD model by mouse and choose various linking devices at each crane point. Users can try to simulate the motion for any prescribed conditions, compare the motion of the block and the reactions and choose appropriate lug points and the type of wires and lugs.

  • PDF

Nondestructive evaluation of spot weld quality using by ultrasonic measurement (초음파계측에 의한 SPOT용접품질의 비파괴평가)

  • 박익근
    • Journal of Welding and Joining
    • /
    • v.12 no.3
    • /
    • pp.109-117
    • /
    • 1994
  • Spot welding has wide used with a high work efficiency in the automotive and aerospace industries. Up to the present, the technique mainly used to test spot welds on production lines has been entirely depended upon destructive chisel or peel testing. Therefore, it's being very important assignment to secure the NDE technique which can be evaluate spot weld quality with more efficiency and high reliability. This paper discusses the feasibility of UNDE techniques to evaluate spot weld quality. For the sake of the approach to the quantitative measurement of nugget diameter and the discrimination of a the corona bond from nugget, ultrasonic c-scan image and distribution of reflective echo amplitude was measured by immersion method with the mechanical and the electronic scanning of point-focussed ultrasonic beam(25 MHz). As the results of this study, corona bond which is the most dangerous types of interface defects can be successfully detected, as well as expulsion and voids. Ultrasonic testing results were confirmed and compared by optical microscope and SAM(Scanning Acoustic Microscope) observation of the spot-weld cross section. The results show that the nugget diameter can be successfully measured with the accuracy of 0.8 mm.

  • PDF

Transmission characteristics of nonlinear torsional vibration of a rotating system with magnet coupling (평판 자기결합 회전장치의 비선형 비틀림 진동 전달 특성)

  • 서상준;전오성;은희준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.5
    • /
    • pp.593-600
    • /
    • 1986
  • In direct contact power transmission from primary driver to a secondary follower system, one of the important problems is the vibration transmission. In some applications the reduction of vibration level at the follower as low as possible is utmost important. The magnetically coupled power transmission system is often used for this purpose. In this paper, we report the results of a study on the nonlinear torsional vibration transmission characteristics of the rotating system with face-type magnet coupling. The equation of motion is solved analytically up to 3rd harmonics. The frictional force of the sliding bearing which is used to support the follower shaft is considered as the damping term. Numerical calculations are carried out by the Newton-Raphson method, and the calculated results are compared with the experiment for face-type magnet coupling. The experimental result shows that the reasonant frequency of the magnet coupling is very low and is in good agreement with the theoretical result when the average damping constant per unit area of the sliding bearing is 0.5kg*f*sec/cm$^{3}$.

Downlink Capacity Analysis of Distributed Antenna Systems with Imperfect Channel State Information

  • Xu, Weiye;Lin, Min
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.253-271
    • /
    • 2017
  • In this paper, considering that perfect channel state information (CSI) is hard to achieve in practice, the downlink capacity of distributed antenna systems (DAS) with imperfect CSI and multiple receive antennas is investigated over composite Rayleigh fading channel. According to the performance analysis, using the numerical calculation, the probability density function (PDF) of the effective output SNR is derived. With this PDF, accurate closed-form expressions of ergodic capacity and outage probability of DAS with imperfect CSI are, respectively, obtained, and they include the ones under perfect CSI as special cases. Besides, the outage capacity of DAS in the presence of imperfect CSI is also derived, and a Newton's method based practical iterative algorithm is proposed to find the accurate outage capacity. By utilizing the Gaussian distribution approximation, another approximate closed-form expression of outage capacity is also derived, and it may simplify the calculation of accurate outage capacity. These theoretical expressions can provide good performance evaluation for downlink DAS for both perfect and imperfect CSI. Simulation results verify the effectiveness of the theoretical analysis, and the system capacity can be improved by increasing the receive antennas, and decreasing the estimation error or path loss. Moreover, the system can tolerate the estimation error variance up to about 0.01 with a slight degradation in the capacity.

Elastohydrodynamic Lubrication Analysis of a Tilted Tapered Roller (Tilting 상태인 테이퍼 로울러의 탄성유체윤활 해석)

  • Park, Tae-Jo
    • Tribology and Lubricants
    • /
    • v.31 no.4
    • /
    • pp.177-182
    • /
    • 2015
  • Tapered roller bearings are widely used in equipment where high combined thrust and radial loads are experienced. A certain amount of tilting between the tapered rollers and the races always occurs because of bending moment load conditions and shaft deflection. It is now well understood that a coherent elastohydrodynamic lubrication (EHL) film separates the rollers and races. In spite of extensive study on EHL problems for over half a century, relatively few studies have focused on the finite line contacts problem. This study presents a complete numerical analysis of the effects of roller tilting on the EHL characteristics in a tapered roller bearing. We systematically analyze this highly nonlinear problem using finite differences with fully non-uniform grids and the Newton-Raphson method. Detailed EHL pressure distributions and film shapes are presented under moderate loads and material parameters. A very small roller tilting significantly affects the pressure distributions and film shapes near both ends of the roller. Moreover, the effect of tilting on the EHL characteristics at the small end is much greater than that at the large end. Therefore, in designing optimum profiles for tapered roller bearings, the profile radius should be larger at the small end.

Development of Finite Element Program for Analyzing Springback Phenomena of Non-isothermal Forming Processes for Aluminum Alloy Sheets (Part II : Theory & Analysis) (알루미늄 합금박판 비등온 성형공정 스프링백 해석용 유한요소 프로그램 개발 (2부 : 이론 및 해석))

  • Keum Y. T.;Han B. Y.;Wagoner R.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.08a
    • /
    • pp.13-20
    • /
    • 2003
  • The implicit, finite element analysis program for analyzing the springback in the warm forming process of aluminum alloy sheets was developed. For the description of planar anisotropy in warm forming temperatures, Barlat's yield function is employed, and the power law type constitutive equation is used in terms of working temperatures fur the depiction of work hardening in high temperatures. Also, Jetture's 4-node shell elements are introduced for reflecting the mechanical behavior of aluminum alloy sheet and the non-steady heat balance equations are solved for considering heat gain and loss during the forming process. For the springback evaluation, Newton-Raphson iteration method is introduced for overcoming the geometric nonlinearlity problem. In order to verify the validity of the FEM program developed, the stretching bending and springback processes are simulated. Though springback analysis results are slightly bigger than experimental ones, they have the same trend of the decreasing springback as the forming temperature increases.

  • PDF

Bearing Vibration and Fatigue Life Analysis According to Fitting between Ball Bearing and Housing with Geometrical Errors (볼 베어링과 형상오차를 갖는 하우징의 끼워 맞춤에 따른 베어링 진동 및 피로 수명의 영향)

  • Lee, Young-Keun;Lee, Seok-Hoon;Jung, Il-Kwon;Cha, Cheol-Hwan;Han, Hyo-Seup
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.5 s.110
    • /
    • pp.441-451
    • /
    • 2006
  • It is known that ball bearings mounted in housing or on shaft are playing a key role to keep it running smoothly. The roundness of a housing bore on which bearing outer ring is mounted with interference has directly affected the running accuracy of bearing. The running accuracy of bearing, therefore, can extend the significant influence to the rotating machinery as well. In this paper, bearing's vibration and fatigue life considering raceway roundness of ball bearing before and after mounted in housing bore are theoretically estimated. To perform analysis, a simple three degrees of freedom model was proposed and then Newton-Raphson iterative method was introduced to be utilized in the analysis. The results show that the vibration magnitude of ball bearing fitted into housing unit is appeared considerably larger than the one of its pre-assembling. And theoretical $L_{10}$ life which ninety percent of the bearing population will endure decreased in about fifty percent.

Papers : Snap - through Phenomena on Nonlinear Thermopiezoelastic Behavior of Piezolaminated Plates (논문 : 압전적층판의 비선형 열압전탄성 거동에서의 스냅 - 스루 현상)

  • O,Il-Gwon;Sin,Won-Ho;Lee,In
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.1
    • /
    • pp.36-43
    • /
    • 2002
  • Thermopiezoelastic snap-through phenomena of piezolaminated plates are investigated by applying an are-length scheme to Newton-Raphson method. Based on the layerwise displacement theory and von Karman strain-displacement relationships, nonlinear finite element formulations are derived for the thermopiezoelastic composite plates. From the static and dynamic viewpoint, nonlinear thermopierzoelastic behavior and vibration characteristicx are stuied for symmetric and eccentric structural models with various piezoelestric actuation modes. Present results show the possibility to enhance the performance, namely thermopiezoelastic snapping, induced by the excessive piezoelectric actuation in the active suppression of thermally buckled large deflection piezolaminated paltes.

Non-linear free vibrations and post-buckling analysis of shear flexible functionally graded beams

  • Anandrao, K. Sanjay;Gupta, R.K.;Ramchandran, P.;Rao, G. Venkateswara
    • Structural Engineering and Mechanics
    • /
    • v.44 no.3
    • /
    • pp.339-361
    • /
    • 2012
  • Large amplitude free vibration and thermal post-buckling of shear flexible Functionally Graded Material (FGM) beams is studied using finite element formulation based on first order Timoshenko beam theory. Classical boundary conditions are considered. The ends are assumed to be axially immovable. The von-Karman type strain-displacement relations are used to account for geometric non-linearity. For all the boundary conditions considered, hardening type of non-linearity is observed. For large amplitude vibration of FGM beams, a comprehensive study has been carried out with various lengths to height ratios, maximum lateral amplitude to radius of gyration ratios, volume fraction exponents and boundary conditions. It is observed that, for FGM beams, the non-linear frequencies are dependent on the sign of the vibration amplitudes. For thermal post-buckling of FGM beams, the effect of shear flexibility on the structural response is discussed in detail for different volume fraction exponents, length to height ratios and boundary conditions. The effect of shear flexibility is observed to be predominant for clamped beam as compared to simply supported beam.