• Title/Summary/Keyword: News Data

Search Result 890, Processing Time 0.025 seconds

An Analysis of Domestic Newspaper Articles on 5.18 using the Bigkinds System (빅카인즈를 활용한 5·18 관련 국내 기사 분석 연구)

  • Juhyeon Park;Hyunji Park;Youngbum Gim
    • Journal of the Korean Society for information Management
    • /
    • v.41 no.1
    • /
    • pp.107-132
    • /
    • 2024
  • This study attempted to analyze newspaper articles related to May 18 through frequency analysis and network analysis using news data related to May 18 for about 30 years from 1990 to 2022 at the Korea Press Foundation's Big Kinds. Specifically, quantitative change trends were examined by analyzing the amount of articles by period and region, and the connection structure between major keywords by the regime was explored through network analysis by regime using co-appearance keywords. As a result of the analysis, it was found that 2019 had the largest amount of coverage, which had many social issues in time, and the Jeolla-do region had the largest amount of coverage in the region. And as a result of network analysis, there were differences in words related to May 18 in news data according to the perception and policy of the regime toward May 18. As a result of synthesizing the analysis of May 18 news data, it was confirmed that May 18 was becoming a democratic movement over time regardless of region, but at the same time, the distortion of May 18 was not resolved.

A Study on the Co-orientation of Internet Portal News Providers and Users (포털뉴스 제공자와 이용자간 상호지향성 연구)

  • Park, Sung-Hee;Park, Su-Mi
    • Korean journal of communication and information
    • /
    • v.30
    • /
    • pp.143-174
    • /
    • 2005
  • This study aims at applying Chaffee & McLeod's co-orientation model to Internet portal news providers and users to find out their mutual understanding toward various features of online news. Included in those features are interactivity, expansion of user role, larger choices(user characteristics), real time update of news, limitless quantity, contextualized contents through hypertext, data base service, and multimedia contents(contents characteristics). To test the level of agreement, accuracy and congruency between the parties, a survey was conducted among 105 portal news providers from 11 online news media, and 105 portal news users between ages 20 and 40. The result indicated that both portal news providers and users showed agreement for user characteristics, but by and large displayed either ignorance or partial congruency toward contents characteristics. Communication between portal news providers and users are thus exported to increase until it reaches the point where the internet's newly born identity as a news medium gets finally stabilized.

  • PDF

Comparing Social Media and News Articles on Climate Change: Different Viewpoints Revealed

  • Kang Nyeon Lee;Haein Lee;Jang Hyun Kim;Youngsang Kim;Seon Hong Lee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.11
    • /
    • pp.2966-2986
    • /
    • 2023
  • Climate change is a constant threat to human life, and it is important to understand the public perception of this issue. Previous studies examining climate change have been based on limited survey data. In this study, the authors used big data such as news articles and social media data, within which the authors selected specific keywords related to climate change. Using these natural language data, topic modeling was performed for discourse analysis regarding climate change based on various topics. In addition, before applying topic modeling, sentiment analysis was adjusted to discover the differences between discourses on climate change. Through this approach, discourses of positive and negative tendencies were classified. As a result, it was possible to identify the tendency of each document by extracting key words for the classified discourse. This study aims to prove that topic modeling is a useful methodology for exploring discourse on platforms with big data. Moreover, the reliability of the study was increased by performing topic modeling in consideration of objective indicators (i.e., coherence score, perplexity). Theoretically, based on the social amplification of risk framework (SARF), this study demonstrates that the diffusion of the agenda of climate change in public news media leads to personal anxiety and fear on social media.

A Study of the Relationships among Types of Web Portal Usage, Credibility of News on Web Portals, and Credibility of News Media Outlets (포털 사이트 뉴스 이용행태, 포털 사이트 뉴스 신뢰도, 언론사 뉴스 신뢰도 간 관계에 대한 연구)

  • Baek, Kanghui
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.10
    • /
    • pp.306-314
    • /
    • 2019
  • Based on the secondary data of the 2018 news media audience conducted by the Korean Press Foundation, this study examines how the credibility of news on web portals and from news media outlets affects the types of web portal usage. The web portal usage was categorized into the two types: paying attention to news edited by the web portals and paying attention to news media outlets. These were named "portal site centered" and "news media outlet centered," respectively. This study found that the credibility of news from the web portals showed positive relationships with both portal site centered and news media outlet centered. The credibility of news from news media outlets had statistically significant relationships with the two types of web portal usage, but it differed depending on the audiences' preferences toward news media outlets. In other words, the credibility of news from news media outlets that are usually preferred or frequently used showed a positive relationship with the portal site centered, but has a negative relationship with the news media outlet centered. On the other hand, the credibility of news from news media outlets that are not preferred or not frequently used had a negative relationship with the portal site centered, but had a positive relationship with the news media outlet centered.

Examination of Factors Influencing the Attitude toward SNS-based Advertising and the Roles of Involvement: Focusing on Facebook News Feed Advertising (SNS 광고 태도에 영향을 주는 요인들과 관여도의 역할에 대한 고찰: 페이스북 뉴스피드 광고를 중심으로)

  • Lee, Sungjoon
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.9
    • /
    • pp.188-202
    • /
    • 2014
  • This major purpose of this study is to examine factors influencing the attitude toward News Feed advertising in Facebook. For this purpose, this study posited seven determinants including informativeness, entertainment, irritation, trust, individualization, incentive and privacy concern, which can have influences on the attitude toward News Feed Advertising. and this research tests the relationships between these seven determinants and the attitude toward News Feed Advertising. An online survey was administrated to collect data and hierarchical regression analyses were employed for data analysis. The results showed that infortainment as a new combined factor of informativeness and entertainment, trust, individualization have significantly positive influences on the attitude toward News Feed advertising in Facebook. It was also shown that the moderating effect of involvement on the relationship between irritation and the attitude. The results in this study implied that it is needed to reinforce the attributes of advertising including infortainment, trust and individualization to boost the effects of News Feed advertising in Facebook on consumers.

Requirement Analysis of Korean Public Alert Service using News Data (뉴스 데이터를 활용한 재난문자 요구사항 분석)

  • Lee, Hyunji;Byun, Yoonkwan;Chang, Sekchin;Choi, Seong Jong
    • Journal of Broadcast Engineering
    • /
    • v.25 no.6
    • /
    • pp.994-1003
    • /
    • 2020
  • In this paper, we investigated the current issues on the KPAS(Korean Public Alert Service) by News analysis. News articles, from May 15, 2005 to April 30, 2020, were collected with the key word of 'KPAS' through the News Big-Data System provided by the Korea Press Foundation. The results of the content analysis are as follows. First, the issues on alert presentation were categorized by alarm sound, message content, alert level, transmission frequency, delay, reception range, time of alert, and language. Issues on inability to receive KPAS messages were categorized into authority, mobile, sending standard, mobile communication infra, etc. For the last two to three years, news on the inability issues had decreased, while news on the presentation issues had increased. This tells us that the public demand for improvement in the KPAS lies in the presentation issues. The demand for societal resolutions to the presentation issues especially on message content, transmission frequency, and reception range has soared.

Improving Performance of Recommendation Systems Using Topic Modeling (사용자 관심 이슈 분석을 통한 추천시스템 성능 향상 방안)

  • Choi, Seongi;Hyun, Yoonjin;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.3
    • /
    • pp.101-116
    • /
    • 2015
  • Recently, due to the development of smart devices and social media, vast amounts of information with the various forms were accumulated. Particularly, considerable research efforts are being directed towards analyzing unstructured big data to resolve various social problems. Accordingly, focus of data-driven decision-making is being moved from structured data analysis to unstructured one. Also, in the field of recommendation system, which is the typical area of data-driven decision-making, the need of using unstructured data has been steadily increased to improve system performance. Approaches to improve the performance of recommendation systems can be found in two aspects- improving algorithms and acquiring useful data with high quality. Traditionally, most efforts to improve the performance of recommendation system were made by the former approach, while the latter approach has not attracted much attention relatively. In this sense, efforts to utilize unstructured data from variable sources are very timely and necessary. Particularly, as the interests of users are directly connected with their needs, identifying the interests of the user through unstructured big data analysis can be a crew for improving performance of recommendation systems. In this sense, this study proposes the methodology of improving recommendation system by measuring interests of the user. Specially, this study proposes the method to quantify interests of the user by analyzing user's internet usage patterns, and to predict user's repurchase based upon the discovered preferences. There are two important modules in this study. The first module predicts repurchase probability of each category through analyzing users' purchase history. We include the first module to our research scope for comparing the accuracy of traditional purchase-based prediction model to our new model presented in the second module. This procedure extracts purchase history of users. The core part of our methodology is in the second module. This module extracts users' interests by analyzing news articles the users have read. The second module constructs a correspondence matrix between topics and news articles by performing topic modeling on real world news articles. And then, the module analyzes users' news access patterns and then constructs a correspondence matrix between articles and users. After that, by merging the results of the previous processes in the second module, we can obtain a correspondence matrix between users and topics. This matrix describes users' interests in a structured manner. Finally, by using the matrix, the second module builds a model for predicting repurchase probability of each category. In this paper, we also provide experimental results of our performance evaluation. The outline of data used our experiments is as follows. We acquired web transaction data of 5,000 panels from a company that is specialized to analyzing ranks of internet sites. At first we extracted 15,000 URLs of news articles published from July 2012 to June 2013 from the original data and we crawled main contents of the news articles. After that we selected 2,615 users who have read at least one of the extracted news articles. Among the 2,615 users, we discovered that the number of target users who purchase at least one items from our target shopping mall 'G' is 359. In the experiments, we analyzed purchase history and news access records of the 359 internet users. From the performance evaluation, we found that our prediction model using both users' interests and purchase history outperforms a prediction model using only users' purchase history from a view point of misclassification ratio. In detail, our model outperformed the traditional one in appliance, beauty, computer, culture, digital, fashion, and sports categories when artificial neural network based models were used. Similarly, our model outperformed the traditional one in beauty, computer, digital, fashion, food, and furniture categories when decision tree based models were used although the improvement is very small.

Analysis of COVID-19 Pandemic based on Massive Big Data Analysis (대규모 빅데이터 분석 기반 COVID-19 Pandemic 분석결과)

  • Kim, Na-Hyeon;Oh, Hayoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.4
    • /
    • pp.495-500
    • /
    • 2021
  • This paper is to identify the recent growing crisis from coronavirus infections-19, using domestic news big data. This paper analyzed media articles related to the crisis caused by COVID-19 using the Korea Press Foundation's news big data analysis system 'BIGKinds'. In this paper, a total of 54 media articles were extracted around the keywords 'Corona' and 'Crisis', after a period of about 10 months. We want to understand the correlation coefficient between the two keywords "Corona" and "Crisis" and to understand what kind of crisis the COVID-19 is facing for each representative category of economy, society, international and cultural. As the COVID-19 crisis is taking a heavy toll on the economy, society and any other categories, this research using big data is expected to be used as a basic data to overcome the crisis of COVID-19.

Futures Price Prediction based on News Articles using LDA and LSTM (LDA와 LSTM를 응용한 뉴스 기사 기반 선물가격 예측)

  • Jin-Hyeon Joo;Keun-Deok Park
    • Journal of Industrial Convergence
    • /
    • v.21 no.1
    • /
    • pp.167-173
    • /
    • 2023
  • As research has been published to predict future data using regression analysis or artificial intelligence as a method of analyzing economic indicators. In this study, we designed a system that predicts prospective futures prices using artificial intelligence that utilizes topic probability data obtained from past news articles using topic modeling. Topic probability distribution data for each news article were obtained using the Latent Dirichlet Allocation (LDA) method that can extract the topic of a document from past news articles via unsupervised learning. Further, the topic probability distribution data were used as the input for a Long Short-Term Memory (LSTM) network, a derivative of Recurrent Neural Networks (RNN) in artificial intelligence, in order to predict prospective futures prices. The method proposed in this study was able to predict the trend of futures prices. Later, this method will also be able to predict the trend of prices for derivative products like options. However, because statistical errors occurred for certain data; further research is required to improve accuracy.

Through the Looking Glass: The Role of Portals in South Korea's Online News Media Ecology

  • Dwyer, Tim;Hutchinson, Jonathon
    • Journal of Contemporary Eastern Asia
    • /
    • v.18 no.2
    • /
    • pp.16-32
    • /
    • 2019
  • Media manipulation of breaking news through article selection, ranking and tweaking of social media data and comment streams is a growing concern for society. We argue that the combination of human and machine curation on media portals marks a new period for news media and journalism. Although intermediary platforms routinely claim that they are merely the neutral technological platform which facilitates news and information flows, rejecting any criticisms that they are operating as de facto media organisations; instead, we argue for an alternative, more active interpretation of their roles. In this article we provide a contemporary account of the South Korean ('Korean') online news media ecology as an exemplar of how contemporary media technologies, and in particular portals and algorithmic recommender systems, perform a powerful role in shaping the kind of news and information that citizens access. By highlighting the key stakeholders and their positions within the production, publication and distribution of news media, we argue that the overall impact of the major portal platforms of Naver and Kakao is far more consequential than simply providing an entertaining media diet for consumers. These portals are central in designing how and which news is sourced, produced and then accessed by Korean citizens. From a regulatory perspective the provision of news on the portals can be a somewhat ambiguous and moving target, subject to soft and harder regulatory measures. While we investigate a specific case study of the South Korean experience, we also trace out connections with the larger global media ecology. We have relied on policy documents, stakeholder interviews and portal user 'walk throughs' to understand the changing role of news and its surfacing on a distinctive breed of media platforms.