• 제목/요약/키워드: News Comments

검색결과 89건 처리시간 0.026초

댓글이력 공개가 포털 뉴스 댓글에 미치는 영향 (Effects of Comment History Disclosure on Portal News Comments)

  • 이세한;방영석
    • 경영정보학연구
    • /
    • 제23권4호
    • /
    • pp.147-163
    • /
    • 2021
  • 본 논문은 포털의 댓글이력공개가 뉴스 댓글에 미치는 영향을 분석한다. 구체적으로, 네이버와 다음에서 수집한 뉴스 코멘트를 기반으로 이중차분분석 방법을 적용하여 네이버의 댓글이력공개 정책의 효과를 실증 분석한다. 분석 결과에 따르면, 댓글이력공개는 댓글의 길이와 긍정성을 증가시켰지만, 품질은 향상시키지 않은 것으로 나타났다.

'좋아요'와 '싫어요'같은 간접적 사회적 정보의 방향과 강도는 온라인 뉴스 콘텐츠 댓글의 숙의의 질과 어떤 관련이 있는가? 토픽 모델링을 이용한 토픽 다양성 분석 (How Are the Direction and the Intensity of Indirect Social Information such as Likes and Dislikes Related to the Deliberative Quality of Online News Content Comments? A Topic Diversity Analysis Using Topic Modeling)

  • 민진영;이애리
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제30권4호
    • /
    • pp.303-327
    • /
    • 2021
  • Purpose The online comments on news content have become social information and are understood based on deliberative democracy. Although the related research has focused on the relationship between online comments and their deliberative quality, the social information provided by online comments consists of not only direct information such as comments themselves but also indirect information such as 'likes' and 'dislikes'. Therefore, the research on online comments and deliberative quality should study this direct and indirect information together, and the direction and the degree of the indirect information should be also considered with them. Design/methodology/approach This study distinguishes comments by the attached 'likes' and 'dislikes', identifies highly supported and highly unsupported comments by the intensity of 'likes' and 'dislikes', and investigates the relationship between their existence and the deliberative quality measured as the topic diversity. Then, we applied topic modeling to the 2,390 news articles and their 74,385 comments collected from five news sites. Findings The topic diversities of the supported and unsupported comments are related to the topic diversity of all comments but the degree of the relationship is higher in the case of supported comments. Furthermore, the existence of highly supported and unsupported comments is led to less diversity of all comments compared to the case where those comments are absent. Particularly, when only highly supported comments are present, topic diversity was lower than in the opposite case.

텍스트마이닝을 통한 댓글의 공감도 및 비공감도에 영향을 미치는 댓글의 특성 연구 (Applying Text Mining to Identify Factors Which Affect Likes and Dislikes of Online News Comments)

  • 김정훈;송영은;진윤선;권오병
    • 한국IT서비스학회지
    • /
    • 제14권2호
    • /
    • pp.159-176
    • /
    • 2015
  • As a public medium and one of the big data sources that is accumulated informally and real time, online news comments or replies are considered a significant resource to understand mentalities of article readers. The comments are also being regarded as an important medium of WOM (Word of Mouse) about products, services or the enterprises. If the diffusing effect of the comments is referred to as the degrees of agreement and disagreement from an angle of WOM, figuring out which characteristics of the comments would influence the agreements or the disagreements to the comments in very early stage would be very worthwhile to establish a comment-based eWOM (electronic WOM) strategy. However, investigating the effects of the characteristics of the comments on eWOM effect has been rarely studied. According to this angle, this study aims to conduct an empirical analysis which understands the characteristics of comments that affect the numbers of agreement and disagreement, as eWOM performance, to particular news articles which address a specific product, service or enterprise per se. While extant literature has focused on the quantitative attributes of the comments which are collected by manually, this paper used text mining techniques to acquire the qualitative attributes of the comments in an automatic and cost effective manner.

온라인 뉴스 베스트 댓글의 특성 분석 (Analyzing the Characteristics of Online News Best Comments)

  • 김진우;조혜인;이봉규
    • 디지털콘텐츠학회 논문지
    • /
    • 제19권8호
    • /
    • pp.1489-1497
    • /
    • 2018
  • 온라인 뉴스에 개인의 참여가 활성화되면서 댓글의 중요성은 더욱 커지고 있다. 특히 이용자들에게 많은 공감을 받는 '베스트 댓글'은 주된 여론으로 인식되고 큰 영향력을 가진다. 따라서 본 연구는 온라인 뉴스 댓글 데이터를 이용하여 베스트 댓글의 특성을 알아보고자 하였다. 이를 위해 일반 댓글과 차이점을 보일 가능성이 있는 요소를 설정 후, 데이터를 수치화하여 일반 댓글과 베스트 댓글의 차이를 분석하였다. 본 연구는 최근 댓글 조작 등의 문제 해결에 실마리를 제공하고 개인 및 학술단체, 정부기관 등을 주체로 하여금 기초 자료로 활용될 것으로 기대된다.

SNS 댓글의 정보 증폭 양상에 대한 연구: 뉴스 사이트 댓글과 SNS 댓글의 센티멘트 차원 비교를 통한 탐색적 분석 (The Amplifying Aspects of SNS Comments: An Exploratory Study through the Sentiment Comparison between News Site Comments and SNS Comments)

  • 민진영
    • 경영정보학연구
    • /
    • 제22권4호
    • /
    • pp.163-184
    • /
    • 2020
  • SNS에서 포스팅과 댓글 형태로 만들어지는 정보는 가공 및 확대되어 뉴스미디어로 재전송되거나 현실 세계에서의 활동으로 연결되기도 하는 등, 그 영향력이 점점 커지고 있다. 최근 들어 SNS 댓글의 이러한 정보 증폭 현상에 대한 논의가 진행되고 있으나, 구체적으로 어떠한 차원의 정보가 확대되는지나 증폭의 방향과 정도 및 이에 영향을 미치는 요인 등은 아직 잘 밝혀져 있지 않다. 따라서 본 연구에서는 댓글 내용의 센티멘트를 이용하여 SNS 댓글이 구체적으로 어떠한 차원에서 원 게시글을 확대하는지 살펴보고, SNS 포스팅 구조와 사회적 연결망의 특징이 어떻게 이 확대 방향과 크기에 영향을 미치는지 뉴스 댓글과 비교하여 살펴보았다. 2,378개의 페이스북 포스팅과 그에 포함된 뉴스 게시글, 이들에 달린 페이스북 댓글 26,312개, 뉴스 사이트 댓글 74,730개를 분석한 결과, SNS 댓글은 원 게시글의 센티멘트를 확대하는 것으로 나타났다. 특히 인지적, 사회적 차원에서는 뉴스 사이트의 댓글보다도 그 확대 정도가 더 큰 것을 알 수 있었다. 정서적 차원에서는 뉴스 사이트 댓글보다 부정적 감정의 확대 정도는 약하고 긍정적 감정의 확대 정도가 큰 것으로 드러나 SNS 댓글이 부정적 감정보다 긍정적 감정을 증폭하는 경향이 있음을 알 수 있었다. 댓글의 원 게시글 증폭 방향과 정도에 있어서는 댓글이 긍정 유지, 혹은 긍정 전환될 때는 SNS 포스팅 작성자와 포스팅에 포함된 게시글 작성자가 동일할 경우 증폭정도도 커지지만 부정 유지되는 경우에는 그렇지 않은 경우에 오히려 증폭되는 경향이 있다는 것을 밝혀 사회적 연결망 하의 관계가 댓글 증폭에 큰 영향을 미치는 것을 보였다.

뉴스 댓글의 감정 분류를 위한 자질 가중치 설정 (Feature Weighting for Opinion Classification of Comments on News Articles)

  • 이공주;김재훈;서형원;류길수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제34권6호
    • /
    • pp.871-879
    • /
    • 2010
  • 본 논문은 뉴스 기사의 댓글에 대한 사용자의 감정을 분류하는 시스템을 제안한다. 제안된 시스템은 댓글의 문서 분류 시스템으로 기계학습에 기반을 두고 있다. 댓글은 일반적인 문서와 달리 본문을 가지고 있으며 본문의 내용이 독자의 감정에 영향을 줄 수 있다. 본 논문에서는 이와 같은 댓글의 특성과 여러 가지 자원을 이용하여 감정 분류를 위한 자질을 제안하고 이들의 가중치 설정 방법을 제안한다. 실험을 통해 이러한 가중치 설정 방법이 한글 뉴스의 댓글에 대한 감정을 분류하는데 효과적임을 알 수 있었다. 또한 댓글과 같이 많은 오류를 포함하는 문서에 대해서 문자 단위의 2음절과 3음절 자질도 충분히 이용 가치가 있음을 확인할 수 있었다. 향후에 뉴스 기사의 댓글뿐 아니라 상품 댓글 등 일반적인 감정 분석에 적용할 계획이다.

온라인 뉴스 사이트에서의 일반댓글과 소셜댓글의 비교분석 (A Comparative Analysis between General Comments and Social Comments on an Online News Site)

  • 김소담;양성병
    • 한국콘텐츠학회논문지
    • /
    • 제15권4호
    • /
    • pp.391-406
    • /
    • 2015
  • 온라인 뉴스에서 개인의 참여가 활성화 되면서 댓글의 중요성이 부각되고 있다. 최근엔 개인의 SNS(social networking site) 계정을 이용하여 댓글을 게재할 수 있는 소셜댓글 서비스가 활성화 되고 있다. 본 연구에서는 실제 온라인 뉴스 댓글 현황 데이터를 이용하여 (1) 댓글의 일반적 특성요소 중 일반댓글과 소셜댓글이 차이점을 보일 가능성이 있는 요소를 도출한 후, (2) 일반댓글에 비해 소셜댓글이 각 특성요소별로 어떻게 다른지 비교 분석하고, 마지막으로 (3) 소셜댓글 이용 업체별로 각 특성요소가 어떻게 달라지는지를 실증 분석해보았다. 이를 위해 기존문헌 조사 및 전문가 인터뷰를 진행하여 여섯 가지 특성요소를 도출하였다. 다음으로 SPSS Statistics의 t-test의 분석 방법을 사용하여, 소셜댓글과 일반댓글이 모든 요소에서 유의한 차이를 보임을 확인하였고, ANOVA와 Duncan test 결과 트위터와 페이스북 그룹 간 차이가 유의함을 확인하였다. 본 연구를 통해 소셜댓글의 실제적인 가치를 명확히 파악할 수 있을 뿐만 아니라, 소셜댓글을 이용한 악성댓글 문제 해결에 실마리를 제공하고, 개인, 기업, 정부기관 등을 주체로 다른 분야의 적용가능성도 살펴볼 수 있을 것으로 기대한다.

개인의 정치성향이 뉴스 댓글에 대한 신뢰성과 사회적 영향력의 인식에 미치는 영향 (The Impact of Individuals' Political Tendency on the Perception of Reliability and Social Impact of Online Newspaper Comments)

  • 이준기;한미애
    • 한국전자거래학회지
    • /
    • 제17권1호
    • /
    • pp.173-187
    • /
    • 2012
  • 뉴스 이용 경로가 오프라인 신문에서 온라인 뉴스 매체로 이동하면서, 새로운 여론 형성의 기제로 대두된 댓글에 대한 연구가 많이 이루어져왔다. 댓글에 대한 연구는 주로 댓글의 품질이나 영향력 유무, 여론 형성 기능 등을 중심으로 이루어져왔다. 그런데, 댓글의 여론 형성 기능에 대한 연구 외에, 정치적 민감도가 높은 이슈에 대한 매체별 논조와 개인의 정치성향에 따른 연구는 찾아보기 힘들다. 특히, 이용자의 사회정체성과 정치성향이 그들의 매체선택과 해당 매체에서 접하는 댓글에 대한 인식에 어떠한 영향을 미치는지에 관한 연구는 거의 없었던 것으로 보인다. 이에 본 연구는, 이용자들이 온라인 뉴스 매체와 자신의 정치성향이 유사한 정도에 따라 해당 댓글의 신뢰도, 영향도 등을 다르게 평가하는지에 대해 사회 정체성 이론의 관점에서 살펴보았다. 이를 위해 '개인과 온라인 뉴스 매체 간 정치성향의 유사성'을 독립 변수로 놓고 '댓글에 대한 일반적인 인식'과 '정치성향이 각기 다른 매체의 댓글에 대한 인식'을 종속 변수로 하여 양 변수의 관계를 분석하였다. 동 연구는 댓글 읽기에 초점을 두고 처음으로 정치성향에 따른 매체 이용 패턴과 댓글에 대한 인식을 연구하여 분석했다는 데 학문적 의미를 찾을 수 있을 것이다. 또한, 온라인 뉴스 매체별 댓글 인식의 차이는 댓글 읽기의 중요성과 공론장으로서의 댓글이 유효함을 증명한데 그 의미가 있다.

소셜미디어 뉴스를 이용한 관심 이슈 연구 (A Study on Interest Issues Using Social Media New)

  • 곽노영;이문봉
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제32권2호
    • /
    • pp.177-190
    • /
    • 2023
  • Purpose Recently, as a new business marketing tool, short form content focused on fun and interest has been shared as hashtags. By extracting positive and negative keywords from media audiences through comment analysis of social media news, various stakeholders aim to quickly and easily grasp users' opinions on major news. Design/methodology/approach YouTube videos were searched using the YouTube Data API and the results were collected. Video comments were crawled and implemented as HTML elements, and the collection results were checked on the web page. The collected data consisted of video thumbnails, titles, contents, and comments. Comments were word tokenized with the R program, comparing positive and negative dictionaries, and then quantifying polarity. In addition, social network analysis was conducted using divided positive and negative comments, and the results of centrality analysis and visualization were confirmed. Findings Social media users' opinions on issue news were confirmed by analyzing and visualizing the centrality of keywords through social network analysis by dividing comments into positive and negative. As a result of the analysis, it was found that negative objective reviews had the highest effect on information usefulness. In this way, previous studies have been reaffirmed that online negative information has a strong effect on personal decision-making. Corporate marketers will analyze user comments on social network services (SNS) to detect negative opinions about products or corporate images, which will serve as an opportunity to satisfy customers' needs.

When Do People Post a Comment to a News Story on the Internet?

  • Lee, Mina;Choi, Inhye;Yang, Seungchan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권1호
    • /
    • pp.434-445
    • /
    • 2015
  • In reading news stories online, people are exposed to others' comments to a news story. In spite of popularity of comments to a news story online, the understanding of why and who posts a comment is still lacking. To complement scarcity and have a better understanding of comment-posting online, this study examined psychological factors which affect the likelihood of posting a comment to a news story online. In particular, three variables were considered: The first variable was communication efficacy, that is, an individual's belief about communication practices and systems, under the supposition that the people who have greater levels of communication efficacy are more likely to post a comment. The second variable was perception of public opinion, to test that when and if people judge their position of the issue as favored by the majority, they tend to post a comment. And finally, the tone of existing comments was included, to test if the tone of comments affects the willingness to post a comment. The results showed that firstly, people at a high level of communication efficacy are more likely to post a comment compared to people at the low level of communication efficacy. Secondly, the perception of public opinion partly influenced the willingness to post a comment. Especially, when people believe communication systems contribute to develop society and also when judged that their opinion is the majority's opinion, they are more likely to post a comment. Finally, the tone of the comments influenced the willingness to post a comment only on the condition that people are confident of the communication practice and are exposed to emotional comments.