• Title/Summary/Keyword: New surface shape

Search Result 557, Processing Time 0.024 seconds

A Study on Air-tightness of High Pressure Liquid Hydrogen Pumping System at the Low Temperature (액체수소용 초저온 고압 피스톤 펌프의 기밀성 향상에 관한 기초연구)

  • Lee, Jonggoo;Lee, Jongmin;Lee, Jongtai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.4
    • /
    • pp.302-310
    • /
    • 2013
  • As an initial step to develop a liquid hydrogen pump of piston type operated under cryogenic and high pressure, leakage and piston head shape for the piston pump were discussed with temperature and pressure. As the results, the leakage depended on correlation among density, viscosity, clearance area by the low temperature. In order to reduce the leakage, it was found that the air-tightness can be improved by minimizing contact surface between piston and cylinder, and also increasing pressure in-cylinder can reduce piston clearance. Among the proposed piston shapes, D type piston shape had the most air-tightness. D type piston had smaller contact surface than other piston shape and easier expansion of cup shape by pressure. The leakage of D type piston shape was found about 7%, compared with A type piston shape. But it was required that analyze about vapor lock by friction and wear resistance.

An Experimental Study on Development of Design-Concrete used Building Wall (건축외벽용 의장콘크리트 개발에 관한 실험적 연구)

  • 임현준;김종원;강태경;김우재;이영도;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.985-990
    • /
    • 2002
  • Contemporary architecture calls for a wide range of surface textures and treatments. A surface compatible with the architect's design may vary from a glass-smooth finish to one requiring special sculptured ornamentation. These surfaces require many different types of form sheathing and lining. The purpose of study development new design form and made elaborateness shape. Easy to used in field that architecture finish material not used expect effective reduce of working hours, personnel expenses, architecture finish material, cost. After this, building wall apply a variety shape in concrete surface.

  • PDF

A Study on Building Wall with Glossing Design-Concrete (건축벽체용 광택문양콘크리트의 성능평가 연구)

  • 김종원;김재은;윤상혁;양동일;조상영;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.573-578
    • /
    • 2003
  • Contemporary architecture calls for a wide range of surface textures and treatments. A surface compatible with the architect's design may vary from a glass-smooth finish to one requiring special sculptured ornamentation. These surfaces require many different types of form sheathing and lining. The purpose of study development new design form and made elaborateness shape. Easy to used in field that architecture finish material not used expect effective reduce of working hours, personnel expenses, architecture finish material, cost. After this, building wall apply a variety shape in concrete surface

  • PDF

Effects of Cu Wire's Shape on the Plating Property of Sn-Pb Solder for Photovoltaic Ribbons

  • Cho, Tae-Sik;Chae, Mun-Seok;Cho, Chul-Sik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.4
    • /
    • pp.217-220
    • /
    • 2014
  • We studied the plating properties of Sn-Pb solder according to the shape of the Cu wire's cross-section for photovoltaic ribbon. The thickness of the Sn-Pb layer largely decreased to 29% on a curved Cu surface, compared to a flat Cu surface. This phenomenon is caused by the geometrical decrease in the contact angle of the liquid Sn-Pb solder and an increase in the surface energy of the solid/vapor on the curved Cu surface. We suggest a new ribbon's design where the Cu wire's cross-section is a semi-ellipse. These semi-ellipse ribbons can decrease the use of Sn-Pb solder to 64% and increase the photovoltaic efficiency, by reducing the contact area between the ribbon and cell, to 84%. We also see an improvement of reflectivity in the curved surface.

Elasto-Plastic Contact Analysis for a Rigid Surface with an Arbitrary Shape in SPH (SPH에서 임의 형상의 강체면에 대한 탄소성 접촉 해석)

  • Seo, Song-Won;Lee, Jae-Hoon;Min, Oak-Key
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.450-455
    • /
    • 2004
  • There is few research about contact problem for a rigid surface with an arbitrary shape in SPH. The variational equation based on the virtual work principle is derived and its solution is obtained by the penalty method. It is proposed a new method that can determine the parameters for a penetration and a penetration rate used in the penalty method. The reproducing condition is adopted to correct the deficiency of kernel on the boundary. In order to calculate a penetration of particles, after checking boundary particles for deformable body boundary normal vectors were determined on the rigid surface. Numerical simulations for models which have rigid surface with an arbitrary shape were conducted to validate the proposed method in 2D. The results of those analysis represent that the contact algorithm proposed in this study works properly.

  • PDF

SPH Algorithm for an Elasto-Plastic Contact Analysis on a Rigid Surface with an Arbitrary Shape (임의 형상의 강체면 탄소성 접촉 해석을 위한 SPH 알고리듬)

  • Lee Jaehoon;Min Oakkey;Seo Songwon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.1 s.232
    • /
    • pp.30-37
    • /
    • 2005
  • There is few research about contact problem for a rigid surface with an arbitrary shape in SPH. The variational equation based on the virtual work principle is derived and its solution is obtained by the penalty method. It is proposed a new method that can determine the parameters for a penetration and a penetration rate used in the penalty method. The reproducing condition is adopted to correct the deficiency of kernel on the boundary. In order to calculate a penetration of particles, after checking boundary particles for deformable body, boundary normal vectors were determined on the rigid surface. Numerical simulations for models which have rigid surface with an arbitrary shape were conducted to validate the proposed method in 2D Cartesian and cylindrical coordinate. The results of those analysis represent that the contact algorithm proposed in this study works properly.

A Study on the Performance Improvement of a 3-D Shape Measuring System Using Adaptive Pattern Clustering of Line-Shaped Laser Light (선형레이저빔의 적응적 패턴 분할을 이용한 3차원 표면형상 측정 장치의 성능 향상에 관한 연구)

  • Park, Seung-Gyu;Baek, Seong-Hun;Kim, Dae-Gyu;Jang, Won-Seok;Lee, Il-Geun;Kim, Cheol-Jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.10
    • /
    • pp.119-124
    • /
    • 2000
  • One of the main problems in 3D shape measuring systems that use the triangulation of line-shaped laser light is precise center line detection of line-shaped laser stripe. The intensity of a line-shaped laser light stripe on the CCD image varies following to the reflection angles, colors and shapes of objects. In this paper, a new center line detection algorithm to compensate the local intensity variation on a line-shaped laser light stripe is proposed. The 3-D surface shape measuring system using the proposed center line detection algorithm can measure 3-D surface shape with enhanced measurement resolution by using the dynamic shape reconstruction with adaptive pattern clustering of the line-shaped laser light. This proposed 3-D shape measuring system can be easily applied to practical situations of measuring 3-D surface by virtue of high speed measurement and compact hardware compositions.

  • PDF

Modeling and Analysis of Diffuse-type Optical Triangulation Displacement Sensor (난반사형 광삼각법 변위 센서의 모델링 및 거동 해석)

  • 오세백;김경찬;김수현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.43-46
    • /
    • 2000
  • Optical triangulation displacement sensors(0TDSs) are widely used for their simple struchlre, high resolution, and long operating range. However, there are several factors that must be taken into account in order to obtain high accuracy and reliability Measurement errors from inclinations a? an object surface, prohe signal fluctuations generated by speckle effects. power vanation of a light source, electronic noises, and so on. Previous models of OTDSs can not show reasonable behavior as change of surface inclination and shape of light intensity distribution on the detector. In this paper, we propose a new and reasonable modeling for diffise-type OTDSs based on a geometrical optics. To verify propriety of new modeling, we take basic experiments. Shape of light intensity distribution is asymmetric in both simulation result and experimental result. Both simulation result and experimental result show same tendency of light intensity distribution movement as changing surface inclination

  • PDF

A Study on the Measurement of the 3-D Object Shapes by Using Optical Ring Method (광링식 3차원 형상 측정법에 관한 연구)

  • Kang, Young-June;Park, Jeong-Hwan;Kim, Dong-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.9
    • /
    • pp.38-45
    • /
    • 1996
  • The optical triangulation method has been used as a non-contact measuring method of three dimensional object whape. But this measuring method has narrow measuring range, non-linearity on steep slope surface and shadow effect. In this study, we discussed a new optical measurement method to overcome these kinds of demerits. The advantage of this new method is that it is possible to measure precisely the object shape having the steep slope surface without shadow effect. As exper- imental results, maximum displacement error was 200 .mu. m over the whole measuring when the incident angle on the object surface was within 60 degree.

  • PDF

Development of a Surface Shape for the Heat Transfer Enhancement and Reduction of Pressure Loss in an Internal Cooling Passage (내부 냉각유로에서 열전달 강화와 압력손실 감소를 위한 표면 형상체의 개발)

  • Doo, Jeong-Hoon;Yoon, Hyun-Sik;Ha, Man-Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.6
    • /
    • pp.427-434
    • /
    • 2009
  • A new surface shape of an internal cooling passage which largely reduces the pressure drop and enhances the surface heat transfer is proposed in the present study. The surface shape of the cooling passage is consisted of the concave dimple and the riblet inside the dimple which is protruded along the stream-wise direction. Direct Numerical Simulation (DNS) for the fully developed turbulent flow and thermal fields in the cooling passage is conducted. The numerical simulations for five different surface shapes are conducted at the Reynolds number of 2800 based on the mean bulk velocity and channel height and Prandtl number of 0.71. The driving pressure gradient is adjusted to keep a constant mass flow rate in the x direction. The thermoaerodynamic performance for five different cases used in the present study was assessed in terms of the drag, Nusselt number, Fanning friction factor, volume and area goodness factor in the cooling passage. The value of maximum ratio of drag reduction is -22.86 %, and the value of maximum ratio of Nusselt number augmentation is 7.05% when the riblet angle is $60^{\circ}$. The remarkable point is that the ratio of Nusselt number augmentation has the positive value for the surface shapes which have over $45^{\circ}$ of the riblet angle. The maximum volume and area goodness factors are obtained when the riblet angle is $60^{\circ}$.