• Title/Summary/Keyword: New steel

Search Result 2,597, Processing Time 0.031 seconds

Global Trend of CO2 Capture Technology Development (이산화탄소 포집기술 국외 기술개발 동향)

  • Baek, Jeom-In
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.143-165
    • /
    • 2016
  • The amount of greenhouse gas emission reduction based on INDCs (Intended Nationally Determined Contributions) submitted to UN by each party is not sufficient to achieve the Paris Agreement's aim to "hold the increase in the global average temperature to well below $2^{\circ}C$ above pre-industrial levels and to pursue efforts to limit the temperature increase to $1.5^{\circ}C$" which was determined in the $21^{st}$ Conference of the Parties to the UNFCCC (COP 21). Accordingly, the emission reduction target of each party will be revised for the $2^{\circ}C$ goal. Among the several options to reduce the carbon emission, CCS (Carbon Capture and Storage) is a key option to curb $CO_2$ emissions from large emission sources such as fossil-based power plants, cement plants, and steel production plants. A large scale CCS demonstration projects utilizing $1^{st}$ generation $CO_2$ capture technologies are under way around the world. It is anticipated, however, that the deployment of those $1^{st}$ generation $CO_2$ capture technologies in great numbers without government support will be difficult due to the high capture cost and considerable increase of cost of electricity. To reduce the carbon capture cost, $2^{nd}$ and $3^{rd}$ generation technologies are under development in a pilot or a bench scale. In this paper, current status of large scale CCS demonstration projects and the $2^{nd}$ and $3^{rd}$ generation capture technologies are summarized. Novel capture technologies on wet scrubbing, dry sorbent, and oxygen combustion are explained in detail for all capture areas: post-combustion capture, pre-combustion capture, and new combustion technologies.

Measurement of Thermal Expansion Coefficient of Package Material Using Strain Gages (스트레인 게이지를 이용한 패키지 재료의 열팽창계수 측정)

  • Yang, Hee-Gul;Joo, Jin-Won
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.3
    • /
    • pp.37-44
    • /
    • 2013
  • It is well known that thermal deformation of electronic packages with Pb-Sn solder and with lead-free solder is significantly affected by material properties consisting the package, as well as those of the solder itself. In this paper, the method for determining coefficient of thermal expansion(CTE) of new material is established by using temperature characteristic of strain gages, and the CTE of molding compound are obtained experimentally. The temperature-dependent CTE of molding compound for Pb-Sn solder and that for lead-free solder are obtained by using strain measurements with well known steel specimen and aluminium specimen as reference specimens, and the CTE's are also measured non-contactly by using moire interferometry. Those results are compared, and the agreement between the two types of strain gage experiment and the moire experiment show the strain gage method used in this paper to be reliable. In the case of the molding compound for Pb-Sn solder, the CTE is measured as approximately $15.8ppm/^{\circ}C$ regardless of the temperature. In the case for the lead-free solder, the CTE is measured as of approximately $9.9ppm/^{\circ}C$ below the temperature of $100^{\circ}C$, and then the CTE is increased sharply depending on the temperature, and reaches to $15.0ppm/^{\circ}C$ at $130^{\circ}C$.

Slant Shear Test for Determining the Interfacial Shear Strength of Concrete Strengthened with Ultra-High Performance Fiber Reinforced Concrete (초고성능 섬유보강 콘크리트로 보강된 콘크리트의 계면 전단강도 결정을 위한 경사전단 실험)

  • Lim, Woo-Young;Hong, Sung-Gul
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.6
    • /
    • pp.637-646
    • /
    • 2016
  • In this study, slant shear tests for the prism specimens strengthened with ultra-high performance fiber reinforced concrete (UHPFRC), normal- and high-strength concrete were performed to evaluate the interfacial shear strength between old and new concrete substrate. Test parameters are the roughness of surface, concrete strength, and fiber volume fraction of UHPFRC. The surface of the concrete was roughened by shot blasting. Test results showed that the adhesion bond resistance of the specimen with a roughened surface was very large compared to that of the specimen with a smooth surface. In addition, the interfacial shear strength appeared to be affected by the concrete strength rather than the fiber volume fraction. For the roughened surface by shot-blasting method, interfacial shear resistance exceeded the upper limit which is presented in current design codes even if the shear-friction reinforcements are not provided. Based on the test results, it is applicable to use the current concrete design codes to achieve the shear-friction design for the interface between conventional concrete and UHPFRC. However, for the surface which is not processed, it would be appropriate to provide additional shear-friction reinforcement.

Longitudinal Arching Characteristics Around the Face of a Soil-Tunnel with Crown and Face-Reinforcement (굴진면 천단 및 수평보강에 따른 굴진면 전후의 종방향 아칭 특성)

  • Kwon Oh-Yeob;Choi Yong-Ki;Lee Sang-Duk;Kim Young-Gun
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.9
    • /
    • pp.133-144
    • /
    • 2004
  • Pre-reinforcement ahead of a tunnel face using long steel or FRP (Fiberglass Reinforced Plastic) pipes in NATM(New Austrian Tunnelling Method), known as the RPUM(Reinforced Protective Umbrella Method) or UAM (Umbrella Arch Method), is the promising method to sustain the stability of a shallow tunnel face and reduce the ground settlements. In addition, horizontal reinforcing of the face is recently emphasized to improve the stability of the face. However, the characteristics on longitudinal arching around the face have not yet been established quantitatively with the RPUM (crown-reinforcing) and/or the face horizontal reinforcing. In this study, therefore, the behavior of cohesionless soil around the face reinforced by the reinforcing member representing the RPUM and horizontal reinforcing is investigated through two-dimensional laboratory model tests. A series of tests were carried out on various conditions by changing lengths and angles of the reinforcing members. Based on the vertical pressure around the face, the characteristics of longitudinal arching have been found for the case of the non-reinforced and the reinforced.

A Study on Architecture and Urban Regeneration in Korea through the Perception of Body (몸의 지각론에 의한 유휴시설의 건축도시 재생에 관한 연구)

  • Hyung, Hyung-Chir;Joh, Hahn
    • Korean Institute of Interior Design Journal
    • /
    • v.26 no.6
    • /
    • pp.210-221
    • /
    • 2017
  • First, we can define how our body perceives the external world and embodies its senses through the philosopher Merleau - Ponty. These philosophical orientations of Merleau-Ponty also appear to urban theorists such as Jane Jacobs, Gordon Cullen, and Juhani Pallasmaa. In other words, after the Second World War, people began to pay attention to human emotions and perceptions while opposing human rational thinking. Especially, they reject the abstract space of modernism and explore the everyday city space where the local character of the area lives. This place is a space where the collective memory of the group is shared over several generations. So, in this space, people's active perceptual system works actively. In the sense of this continuity of time, their ideas intersect with the concept of urban. Specifically, Jacobs criticizes massive development and proposes the development of a small block-based city with a commonality of old and new. In addition, we argue that urban space can be a visually interesting object through the continuous visual concept of urban theorist Cullen. In particular, he rediscovers the value of traditional urban space through visual experience between architecture and urban facilities. Finally, the architectural city theorist, Pallasmaa., criticizes the visual centrality of modern cities and thinks about the value of multidisciplinary space that can be experienced in architecture. This study examines the space of reproduction in detail on the perspective of the body philosophy and urban theorists. In other words, the play space inherits the natural city time, so when our body experiences this play space, we can actively sense and perceive the various senses. So we can invoke the active external actions of our bodies. Through the analysis of the size of the reconstruction space of the architectural city, various types of body senses and responses can be. Yoon Dongju Literary Museum, which renovated the old water tank of the city, can recognize the unfamiliar sense of body in everyday life through the traces and smells of water in the past and the restrained visuality. In addition, Seonyudo Park, which regenerates the waste water purification plant, can experience a phenomenal phenomenon through water space, old concrete and traces of steel. Finally, with the most recently played Seoul Road 7017 can experience interesting urban spaces in terms of a variety of plants, a human scale space creating movement, and a continuous visual.

Development and utility evaluation of new Multi-Leaf Collimator for Diagnostic X-ray Equipment

  • Ji, Hoon;Han, Su Chul;Baek, Jong Hyeun;Lee, Dong Hoon;Park, Seungwoo
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.936-942
    • /
    • 2018
  • The diagnostic multi-leaf collimator preventing unnecessary dose from entering into patients during the diagnostic examination was made in this study. The movement of the entire 50 leaves was embodied with the group of 25 ones thereof configured in a pair facing each other on the left and right of the median line. Dimensions of the length, width, and height of each shielding leaf were $5{\times}0.5{\times}0.5cm^3$ resulting in the maximum boost field of $10{\times}10cm^2$. The material of multi-leaf collimator had the excellence on the machinability with the use of the SKD-11 alloy tool steel having the high wear resistance against frequent movement, and it was devised to control both-side's shielding leaves by moving 2 motors unlike existing remedial multi-leaf collimator that use as many motors as the number of 50 shielding leaves. Thereafter, the transmission dose of leaves, cross-leaf leakage dose, and inter-leaf leakage dose were measured by the developed multi-leaf collimator attached to X-ray equipment. An ionization chamber was used to detect doses there from, and the comparative analysis was carried out by means of the radiographic film that was easy to detect the dose leakage in between each leaf. Results obtained from the test conducted in comparative analysis yielded approximately 98%, 96%, and 94% of shielding efficiency realized at each level of energy of 80kV, 100kV, and 120kV it was confirmed there was no dose leakage resulted from the varied level of irradiation energy. Thus the multi-leaf collimator to be developed based on this study is thought that it could fully reduce the unnecessary dose to patients in the diagnostic test and the shielding efficiency thereof is expected to be increasing if it is made in a miniaturized form with a way of increasing the thickness of each leaf later for an extended application to general diagnostic purposes.

Influence of Carbonation for Chloride Diffusion in Concrete (탄산화 복합환경시 염소이온 확산에 관한 연구)

  • Oh Byung-Hwan;Lee Sung-Kyu;Lee Myung-Kue;Jung Sang-Hwa
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.2 s.86
    • /
    • pp.179-189
    • /
    • 2005
  • Corrosion of steel due to chloride attack is a major concern in reinforced concrete structures which are located in the marine environments. In this case, Fick's 2nd law has been used for the prediction of chloride diffusion related with service life of concrete structures. However, those studies were confined mostly to the single deterioration due to chloride only, although actual environment is rather of combined type. The purpose of the present study is, therefore, to explore the influences of carbonation to chloride attack in concrete structures and to investigate the validity of Fick's law to chloride attack combined carbonation. The test results indicate that the chloride ion profiles from Fick's law using the diffusion coefficient of immersion tests is not reflected the effect of separation of chloride ions in carbonation region but valid in sound region in case of combined action. On the other hand, the chloride ion profiles from Fick's law using the diffusion coefficient of Tang and Nilsson's method coincide with test results under dry-wet condition but not under combined condition. The results of present study may Imply that the new method for the measurement of diffusion coefficient is required to predict the chloride ion profiles in case of combined action at early.

New Suggestion of Effective Moment of Inertia for Beams Reinforced with the Deformed GFRP Rebar (이형 GFRP Rebar로 보강된 보의 유효단면이차모멘트 산정식 제안)

  • Sim, Jong-Sung;Oh, Hong-Seob;Ju, Min-Kwan;Lim, Jun-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.2
    • /
    • pp.185-191
    • /
    • 2008
  • To fundamentally solve the problem of deterioration of concrete structures, it has been researched that the high durable concrete structure reinforced with the FRP rebar can be one of major solution to the newly-developed concrete structure. FRP rebar has lots of advantages such as non-corrosive, high performance and light weight against the conventional steel rebar. Among these kinds of FRP rebars, GFRP rebar has usually been considered as the best reinforcement because of its economic point of view. Even though the material capacity of the GFRP rebar was already investigated, there are some problems such as low modulus of elastic that will be cause for degrade of the serviceability of flexural concrete member reinforced with the GFRP rebar. Thus, the deflection characteristics of the GFRP rebar reinforced concrete structure should be considered then investigated. In this study, ACI 440 guideline (2003), ISIS Canada Design Manual (2001) and Toutanji et al. (2000) was considered for predicting the moment of inertia of the concrete beam reinforced with the GFRP rebar. And it was also evaluated that load-deflection relationship had a good accordance with the test and analysis result. In the result of this study, it could be estimated that the load-deflection relationship using the suggested equation of moment of inertia in this study indicated better accordance with the test result than that of the others until failure.

Cyclic fatigue resistance, torsional resistance, and metallurgical characteristics of M3 Rotary and M3 Pro Gold NiTi files

  • Pedulla, Eugenio;Lo Savio, Fabio;La Rosa, Giusy Rita Maria;Miccoli, Gabriele;Bruno, Elena;Rapisarda, Silvia;Chang, Seok Woo;Rapisarda, Ernesto;La Rosa, Guido;Gambarini, Gianluca;Testarelli, Luca
    • Restorative Dentistry and Endodontics
    • /
    • v.43 no.2
    • /
    • pp.25.1-25.10
    • /
    • 2018
  • Objectives: To evaluate the mechanical properties and metallurgical characteristics of the M3 Rotary and M3 Pro Gold files (United Dental). Materials and Methods: One hundred and sixty new M3 Rotary and M3 Pro Gold files (sizes 20/0.04 and 25/0.04) were used. Torque and angle of rotation at failure (n = 20) were measured according to ISO 3630-1. Cyclic fatigue resistance was tested by measuring the number of cycles to failure in an artificial stainless steel canal ($60^{\circ}$ angle of curvature and a 5-mm radius). The metallurgical characteristics were investigated by differential scanning calorimetry. Data were analyzed using analysis of variance and the Student-Newman-Keuls test. Results: Comparing the same size of the 2 different instruments, cyclic fatigue resistance was significantly higher in the M3 Pro Gold files than in the M3 Rotary files (p < 0.001). No significant difference was observed between the files in the maximum torque load, while a significantly higher angular rotation to fracture was observed for M3 Pro Gold (p < 0.05). In the DSC analysis, the M3 Pro Gold files showed one prominent peak on the heating curve and 2 prominent peaks on the cooling curve. In contrast, the M3 Rotary files showed 1 small peak on the heating curve and 1 small peak on the cooling curve. Conclusions: The M3 Pro Gold files showed greater flexibility and angular rotation than the M3 Rotary files, without decrement of their torque resistance. The superior flexibility of M3 Pro Gold files can be attributed to their martensite phase.

Analysis on the Flexural Behavior of Existing Reinforced Concrete Beam-Column Structures Infilled with U-Type Precast Wall Panel (U형 프리캐스트 콘크리트 벽패널로 채운 기존 철근 콘크리트 보-기둥 구조물의 휨 거동 분석)

  • Son, Guk-Won;Yu, Sung-Young;Lim, Cheol-Woo;Ju, Ho-Seong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.5
    • /
    • pp.56-66
    • /
    • 2015
  • This study aims at developing a new seismic resistant method by using precast concrete wall panels for existing low-rise, reinforced concrete beam-column buildings such as school buildings. Three quasi-static hysteresis loading tests were performed on one unreinforced beam-column specimen and two reinforced specimens with U-type precast wall panels. Seismic resistant test of anchored and welded steel plate connections manifested an average of 2.8 times increase in the maximum loading (average 591.8 kN) in comparison to unreinforced beam-column specimen. The maximum drift ratios were also shown between 1.4% and 2.7%. An analytical study was performed while assuming the RC column on the right side and the vertical element of the reinforced PC panel to behave in completely composite manner and the RC column on the left side and PC panel to behave in completely non-composite manner when loading was exerted from upper right end of RC frame of specimen to its left side. It was found with the assumptions that the overall flexural behavior in principle agreed with the experimental result.