• Title/Summary/Keyword: New renewable energy system

Search Result 1,388, Processing Time 0.171 seconds

Z-Source Converter with Maximum Boost Voltage Gain

  • Nguyen, Minh-Khai;Jung, Young-Gook;Lim, Young-Cheol
    • Proceedings of the KIPE Conference
    • /
    • 2008.10a
    • /
    • pp.112-114
    • /
    • 2008
  • This paper proposes a new two-stage Z-source converter (TSZC). The purpose of the proposed system is to obtain the ac voltage with a maximum boost voltage for fuel cell applications as a renewable energy source. In order to provide a continuous current path, a switching strategy for the dc-ac ZSI and ac-ac ZSC of the proposed system was used. The operation principle, analysis and simulation results of 1.2 kW fuel cell stack were also presented.

  • PDF

High-rate Anaerobic Co-digestion of Food Waste and Sewage Sludge (음식물쓰레기와 하수슬러지의 고율 혐기성 통합소화)

  • Heo, Nam-Hyo;Chung, Sang-Soon
    • New & Renewable Energy
    • /
    • v.1 no.2 s.2
    • /
    • pp.60-72
    • /
    • 2005
  • The effect of alkaline pre-treatment on the solubilization of waste activated sludge(WAS) was investigated, and the biodegradability of WAS, pretreated WAS, [PWAS], food waste and two types of mixture were estimated by biochemical methane potential [BMP] test at $35^{\circ}C$. The biodegradability of PWAS and mixture waste were significantly improved due to the effect of alkaline hydrolysis of WAS. An alkaline pre-treatment was identified to be one of the useful pre-treatment for improving biodegradability of WAS and mixture waste. In high-rate anaerobic co-digestion system coordinate with an alkaline pre-treatment in process, the digesters were operated at the HRT of 5, 7, 10 and 13 days with a mixture of FW $50\%\;and\;PWAS\;50\%,\;$In term of $CH_4$ content, VS removal and specific methane production [SMP] which are the parameters in the performance of digester, the optimum operating condition was found to be a HRT of 7 days and a OLR of 4.20g/L-day with the highest SMP of 0.340 L $CH_4/g$ VS.

  • PDF

Computational Heat Transfer Analysis of Dish Type Solar Receiver Using the Transient model (CFD를 이용한 접시형 태양열 집열기의 과도 열전달 모델 해석)

  • Oh, Sang-June;Lee, Ju-Han;Seo, Joo-Hyun;Lee, Jin-Gyu;Cho, Hyun-Seok;Seo, Tae-Beom
    • New & Renewable Energy
    • /
    • v.4 no.4
    • /
    • pp.72-79
    • /
    • 2008
  • A numerical and experimental studies are carried out to investigate the transient heat transfer characteristics of 5kWth dish type solar air receiver. Measured solar radiation and temperatures at several different locations are used as boundary conditions for numerical a. Many parameters' effects (reflectivity of the reflector, the thermal conductivity of the receiver body, transmissivity of the quartz window, etc.) on the thermal performance are investigated. Discrete Transfer Method is used to calculate the radiation heat exchange in the receiver. A transient heat transfer model is developed and the rate of radiation, convection and conduction heat transfer are calculated. Comparing of the experimental and the numerical results, results of both are in good agreement. Using the numerical model, the transient heat transfer characteristics of volumetric air receiver for dish type solar thermal systems are known and the transient thermal performance of the receiver can be estimated.

  • PDF

Analysis for the Operating Characteristics when the Induction Motor is Used as a Generator (유도전동기를 발전기로 사용시 동작 특성 해석)

  • Kim, Jong-Gyeum
    • New & Renewable Energy
    • /
    • v.10 no.2
    • /
    • pp.5-11
    • /
    • 2014
  • Squirrel cage induction motor is the main driving system of industrial field and familiar with its use in a large variety of applications. The structure and operating characteristics of induction generator is almost identical to induction motor, but the induction generator part is used restrictively from hydropower power and wind power development etc. Recently induction generator is commonly used for micro & small hydro power applications due to its simplicity, reliability, low cost and robustness. Input and output of induction motor has turned against at the induction generator operation. Rotation speed of induction generator is small faster than synchronous speed of induction motor. As output of induction machines increases with the increasement of speed, so loss is same. Actually, generator efficiency is lower than motor at this condition. If induction generator is connected with mechanical load such as increaser, total efficiency is decreased. Consequently the quality in compliance with an induction motor parameter applying like that in the generator is a possibility of having the error of some. In this paper, we analyzed that input, output, torque and efficiency of induction machine is different from each other above and below synchronous speed.

Variability of Future Wind and Solar Resource Over the Korean Peninsula Based on Climate Change Scenario (기후변화 시나리오에 근거한 한반도 미래 풍력·태양-기상자원 변동성)

  • Byon, Jae-Young;Kim, Yumi;Choi, Byoung-Choel
    • New & Renewable Energy
    • /
    • v.10 no.2
    • /
    • pp.29-39
    • /
    • 2014
  • This study examines the future variability of surface wind speed and solar radiation based on climate change scenario over the Korean Peninsula. Climate change scenarios used in this study are RCP 4.5 and 8.5 with a 12.5 km horizontal resolution. Climate change scenario RCP 4.5 and 8.5 reproduce the general features of wind speed over the Korean Peninsula, such as strong wind speed during spring and winter and weak wind speed during summer. When compared with the values of wind speed and solar radiation of the future, they are expected to decrease current wind and solar resource map. Comparing the resource maps using RCP 4.5 and 8.5 scenarios, wind speed and solar radiation decrease with increasing greenhouse gas concentration. Meteorological resource maps of future wind and solar radiation should be improved with high resolution for the industrial application.

Fire and Explosion Hazards and Safety Management Measures of Waste Plastic-to-Pyrolysis Oil Conversion Process (폐플라스틱 열분해 유화 공정의 화재·폭발 위험성 및 안전관리 방안)

  • Dong-Hyun Seo;Yi-Rac Choi;Jin-Ho Lim;Ou-Sup Han
    • New & Renewable Energy
    • /
    • v.19 no.3
    • /
    • pp.22-33
    • /
    • 2023
  • The number of fire and explosion accidents caused by pyrolysis oil and gas at waste plastic pyrolysis plants is increasing, but accident status and safety conditions have not been clearly identified. Therefore, the aim of the study was to identify the risks of the waste plastic pyrolysis process and suggest appropriate safety management measures. We collected information on 19 cases of fire and explosion accidents that occurred between 2010 and 2021 at 26 waste plastic pyrolysis plants using the Korea Occupational Safety and Health Agency (KOSHA) database and media reports. The mechanical, managerial, personnel-related, and environmental problems within a plant and problems related to government agencies and the design, manufacturing, and installation companies involved with pyrolysis equipment were analyzed using the 4Ms of Machines, Management, Man, and Media, as well as the System-Theoretic Accident Model and Processes (STAMP) methodology for seven accident cases with accident investigation reports. Study findings indicate the need for establishing legal and institutional support measures for waste plastic pyrolysis plants in order to prevent fire and explosion accidents in the pyrolysis process. In addition, ensuring safety from the design and manufacturing stages of facilities is essential, as are measures that ensure systematic operations after the installation of safety devices.

Sulfuric Acid Catalytic Conversion to Levulinic Acid from Cellulosic Biomass (섬유소계 바이오매스로부터 황산 촉매를 이용한 레블린산 생산)

  • Hyeong-Gyun Ahn;Seungmin Lee;Yi-Ra Lim;Hyunjoon Kim;Jun Seok Kim
    • New & Renewable Energy
    • /
    • v.19 no.4
    • /
    • pp.11-19
    • /
    • 2023
  • Levulinic acid (LA) derived from cellulosic biomass, serves a crucial intermediate that can be used in various chemical conversions. This study focused on optimizing the production of LA using two types of pretreated rice husk (de-ashed and delignificated cellulosic biomass) in a batch reaction system through catalytic conversion with sulfuric acid. To determine the optimal conditions, the conversions of glucose and α-cellulose were examined to compare the effects of pretreatment on the rice husk. The experimental parameters covered a broad spectrum, including temperatures ranging from 140℃ to 200℃, a reaction time was up to 600 minutes, and a substrate to catalyst (acid solution) ratio of 100 g/L. The highest LA yield was 44.8%, achieved from de-ashed rice husk with 3.0 wt.% of sulfuric acid at 180℃ and with a reaction time of 180 minutes. In the case of the delignificated rice husk, a LA yield of 43.6% was obtained with 3.0 wt.% of sulfuric acid at 200℃ and with reaction time of 30 minutes.

The Effects of Depreciation Methods on Investment Motivation for Solar Photovoltaic Systems (태양광 설비투자에 대한 제도적 유인방안 연구: 감가상각법의 경제적 효과 분석)

  • Kim, Kyung Nam
    • New & Renewable Energy
    • /
    • v.16 no.4
    • /
    • pp.65-75
    • /
    • 2020
  • The value of tangible assets depreciates over their useful life and this depreciation should be adequately reflected in any tax or financial reports. However, the method used to calculate depreciation can impact the financial performance of solar projects due to the time value of money. Korean tax law stipulates only one method for calculating the depreciation of solar photovoltaic facilities: the straight-line method. Conversely, USA's tax law accepts other depreciation methods as solar incentives, including the modified accelerated cost recovery system (MACRS) and Bonus depreciation method. This paper compares different depreciation methods in the financial analysis of a 10 MW solar system to determine their effect on the financial results. When depreciation was calculated utilizing the MACRS and Bonus depreciation method, the internal rate of return (IRR) was 10.9% and 16.4% higher, respectively, than when the Korean straight-line depreciation method was used. Additionally, the increased IRR resulting from the use of the two US methods resulted in a 20.5% and 27.4% higher net present value, respectively. This shows that changing the depreciation calculation method can redistribute the tax amount during the project period, thereby increasing the discounted cash flow of the solar project. In addition to increasing profitability, USA's depreciation methods alleviate the uncertainty of solar projects and provide more flexibility in project financing than the Korean method. These results strongly suggest that Korean tax law could greatly benefit from adopting USA's depreciation methods as an effective incentive scheme.

Enzymatic sccharification of lignocellulosic biomass by enzyme system of brown-rot fungi (갈색부후균의 효소시스템을 이용한 목질계 바이오매스의 효소당화)

  • Yoon, Jeong-Jun;Cha, Chang-Jun;Kim, Yeong-Suk;Kim, Young-Kyoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.529-532
    • /
    • 2006
  • Recently the production of ethanol from lignocecllulosics has received much attention due to immense potential for conversion of renewable biometerials into biofuels and chemicals. Fomitopsis palustris causes a typycal brown-rot and is unusual in that it rapidly depolymerize the cellulose in wood without removing the surrounding lignin that normally prevents microbial attack. This study demonstrated that the brown rot basidiomycete F. palustris was able to degrade crystalline cellulose. This fungus could also produce the three major cellulases (BGL, EXG and EG) when the cells were grown on 2.0% Avicel. The fungus was able to degrade both the crystalline and amorphous forms of cellulose from woody biomasses. Moreover, we found that this fungus has the processive EG like CBH which are able to degrade the crystalline region of cellulose. To establish the cellulase system in relation with degradation of woody biomass, we performed that purification, characterization and molecular cloning of a BGL, EGs and GLA from F. palustris grown on Avicel.

  • PDF

Development of Biomass Gasification System Using a Downdraft Gasifier (하향류식 가스화기를 이용한 바이오매스 가스화 시스템 개발)

  • Son, Young-Il;Yoon, Sang-Jun;Choi, Young-Chan;Kim, Yong-Ku;Ra, Ho-Won;Lee, Jae-Goo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.662-665
    • /
    • 2007
  • Since biomass is given the status of "renewable resource" in contrast to "exhaustible resource" e.q., fossil fuels, it plays a significant role in the sustainable development in future. We installed a downdraft gasifier for power generation from biomass materials. The biomass raw materials were wood chips with a moisture content of 18-23 wt.%, supplied at 40-50kg/h. This paper describes on the optimum gasification air ratio that is defined as the ratio of the oxygen mole supplied into the gasifier to the oxygen mole required for complete combustion for producing syngas supplied into a gas engine. The results showed that, lower heating value of the syngas was 1200 $kcal/m^3$ $_N-dry$ and cold gas efficiency of the gasification system was 72% under optimum operating conditions.

  • PDF