• Title/Summary/Keyword: New renewable energy system

Search Result 1,388, Processing Time 0.025 seconds

Prototype Hardware Design and Optimal Algorithm of PC Based Start·Stop Control System for Tidal Generation (조력용 PC 기반 기동·정지 제어시스템의 최적화 알고리즘과 시제품 하드웨어 설계)

  • Kim, Yoon-Sang;Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.2
    • /
    • pp.89-94
    • /
    • 2014
  • Tidal generation has become one of environmentally friendly new and renewable future sources of energy. The Sihwa Tidal Power Plant in South Korea, which was imported from abroad by turnkey type in 2011, connected to the power system in 2012, and is currently under commercial operation. However, leading companies are reluctant to disclose their technologies associated with the control systems and are not cooperative in technology transfers, making it a high priority to develop core technologies in South Korea. In order to develop a start stop control system for tidal generation, this paper presents the optimal algorithm for decision making and prototype of hardware design. First, control systems in tidal power, such as plant operation control, data interfaces between systems, monitoring and control points of the control system, are analyzed. The software development and PC based emulator processes for optimization algorithm processing are described. Finally, verification of the algorithm implementation, hardware platform for start stop control device, and implementation of prototype control system were discussed.

Investigation and Analysis on the present state of Geothermal Source Heat Pump System Applied in Korea (지열히트펌프 시스템의 국내 적용현황 조사 및 분석)

  • Choi, Mi-Young;Ko, Myeong-Jin;Kim, Yong-Shik;Park, Jin-Chul;Rhee, Eon-Ku
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.5
    • /
    • pp.267-272
    • /
    • 2009
  • This study aims to investigate and analyze the present state of ground source heat pump(GSHP) system applied in Korea. It is based on the statistic from the New and Renewable Energy Center in Korea and construction results of the professional companies registered to the center. The research items were installed area, installed year, building use, ground heat exchange type and heat exchanger type of the pump. According to the result of investigation, the using GSHP system have been increasing steadily as the space heating and cooling system in a building. The capacity of this system is also becoming lager based on technical and economical feasibility analysis about the system since GSHP system first introduced in 2000.

Location Analysis for Developing Small Hydropower Using Geo-Spatial Information System (지형공간정보체계를 활용한 소수력 개발의 입지분석)

  • Yi, Choong-Sung;Kim, Kil-Ho;Lee, Jin-Hee;Shim, Myung-Pil
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.12
    • /
    • pp.985-994
    • /
    • 2007
  • Small hydropower is the one of the cleanest one among new and renewable energy with less green house gas emissions. Recently, the necessity of developing small hydropower is emerging since its remaining potential resources in this country are abundant. However, a survey or research on the small hydropower development has been hardly performed since the 1990#s. These circumstances encourages a systematic approach for the small hydropower development. The purpose of this study is to propose a methodology of the location analysis for developing small hydropower. To this end, constraint and location criteria with weights are established and quantification method of each factor is presented. Especially, the analysis procedure is established on the basis of GSIS. Also the study focus on raising the objectivity and precision of analysis by developing system model with automatic search. The proposed methodology is applied to Bochung stream in Keum Riverbasin. The result selects the four and two locations of dam type and run-of-river type respectively. This study will be beneficial to the future activation of small hydropower development as a fundamental work.

The Experimental Study on the Evaluation of Tidal Power Generation Output Using Water Tank (수조를 이용한 조력발전량산정에 관한 실험적 연구)

  • Jeong, Shin-Taek;Kim, Jeong-Dae;Ko, Dong-Hui;Choi, Woo-Jung;Oh, Nam-Sun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.2
    • /
    • pp.232-237
    • /
    • 2008
  • A method to generate electric power from small scale water tank. For this purpose, manufacturing tank is investigated, measuring water level change at any time, and finally comparing experimental and theoretical value, are performed. Inner and outer tank are made to simulate flood and ebb generation. Two sets of pipe are connected between tanks, and experiments are performed under varying flowrate. Coefficients of flowrate are calculated comparing water level change data and theoretical value. Measured and theoretical water levels are highly correlated, and this ascertains that analytical equation simulates real water level changes well. Flowrate change depending on the existence of propeller and valve, on flood and ebb generation, shows the necessity of experiments in the process of manufacturing electric power system. Moreover, total energy calculated from experimental data agrees well with that of theoretical equation. In spite of small tidal power output, this generating system with optimum water tank can be applied to any place where high water level change occurs, and can make a contribution to producing new and renewable energy consequently.

Technology for Real-Time Identification of Steady State of Heat-Pump System to Develop Fault Detection and Diagnosis System (열펌프의 고장감지 및 진단시스템 구축을 위한 실시간 정상상태 진단기법 개발)

  • Kim, Min-Sung;Yoon, Seok-Ho;Kim, Min-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.4
    • /
    • pp.333-339
    • /
    • 2010
  • Identification of a steady state is the first step in developing a fault detection and diagnosis (FDD) system of a heat pump. In a complete FDD system, the steady-state detector will be included as a module in a self-learning algorithm, which enables the working system's reference model to "tune" itself to its particular installation. In this study, a steady-state detector of a residential air conditioner based on moving windows was designed. Seven representative measurements were selected as key features for steady-state detection. The optimized moving-window size and the feature thresholds were decided on the basis of a startup-transient test and no-fault steady-state test. Performance of the steady-state detector was verified during an indoor load-change test. In this study, a general methodology for designing a moving-window steady-state detector for applications involving vapor compression has been established.

Numerical Analysis of Integrated Fuel Processing System Considering Thermo-Chemical Energy Balance (열/화학적 에너지 평형을 고려한 통합 연료 개질 시스템의 수치적 연구)

  • Noh, Junghun;Jung, Hye-Mi;Jung, Un-Ho;Yoon, Wang-Lai;Um, Sukkee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.111.1-111.1
    • /
    • 2010
  • This paper focuses on a systematic configuration of steam reforming fuel processor, particularly designed for small and medium sized hydrogen production application. In a typical integration of the fuel processor, there exist significant temperature gradients over the entire system which has negative effect on both catalyst life-time and system performance. Also, the volumetric inefficiency should be avoided to obtain the possible compactness for the commercial purpose. In the present work, the computational analysis will be performed to gain the fundamental insight on the transport phenomena and chemical reactions in the reformer consisting of preheating, steam reforming (SR), and water gas shift (WGS) reaction beds in the flow direction. Also, the fuel processing system includes a top-fired burner providing necessary thermal energy for endothermic catalytic reactor. A fully two-dimensional numerical modeling for a integrated fuel processing system is introduced for in-depth analysis of the heat and mass transport phenomena based on surface kinetics and catalytic process. In the model, water gas shift reaction and decomposition reaction were assumed to be at equilibrium. A kinetic model was developed and then computational results were compared with the experimental data available in the literature. Finally, the case study was done by considering the key parameters, i.e. steam to carbon (S/C) ratio and temperature. The computer-aided models developed in this study can be greatly utilized for the design of advanced fast-paced compact fuel processors research.

  • PDF

Design of Nonlinear Controller for Variable Speed Wind Turbines based on Kalman Filter and Artificial Neural Network (칼만필터 및 인공신경망에 기반한 가변속 풍력발전 시스템을 위한 비선형 제어기 설계)

  • Moon, Dae-Sun;Kim, Sung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.2
    • /
    • pp.243-250
    • /
    • 2010
  • As the wind has become one of the fastest growing renewable energy sources, the key issue of wind energy conversion systems is how to efficiently operate the wind turbines in a wide range of wind speeds. Compared to fixed speed turbines, variable speed wind turbines feature higher energy yields, lower component stress and fewer grid connection power peaks. Generally, measurement of wind speed is required for the control of variable speed wind turbine system. However, wind speed measured by anemometers is not accurate owing to various reasons. In this work, a new control algorithm for variable speed wind turbine system based on Kalman filter which can be used for the estimation of wind speed and artificial neural network which can generate optimum rotor speed is proposed. Also, to verify the feasibility of the proposed scheme, various simulation studies are carried out by using Simulink in Matlab.

A Study on Regional Distribution of the Ground Effective Thermal Conductivity (지중 유효 열전도도의 지역별 분포)

  • Kong, Hyoung Jin;Kwon, Soon-Ki;Ji, Seung Gyu
    • Transactions of the KSME C: Technology and Education
    • /
    • v.4 no.1
    • /
    • pp.43-47
    • /
    • 2016
  • Ground source heat pump(GSHP) systems is known as environmental friendly and energy saving. Especially a ground heat exchanger is an important unit that determines the thermal performance of a system and initial cost. In design phase of vertical GSHP system, it is recommended that the effective borehole thermal resistance, be determined from in-situ thermal response test. In this study, ground effective thermal conductivity was categorized by a region. As a result of the study, the ground thermal conductivity of national average was analyzed as 2.56 W/mK. The highest regional average of thermal conductivity is 2.68 W/mK in Seoul, and the lowest is 2.28 W/mK in Busan. Also, the thermal conductivity on the coast has been analyzed approximately 30% lower than the average.

Development of Operation and Control Technology of Energy Storage System for Frequency Regulation and Operation by Grid Connected Automatic Control (주파수조정용 에너지저장장치 운전제어 기술의 개발과 계통연계 자동제어 운전)

  • Lim, Geon-Pyo;Choi, Yo-Han;Im, Ji-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.4
    • /
    • pp.235-241
    • /
    • 2016
  • Grid-connected, large-capacity energy storage systems (ESS) can be used for peak load supply, frequency regulation, and renewable energy output smoothing. In order to confirm the capability of battery ESS to provide such services, 4MW/ 8MWh battery ESS demonstration facility was built in the Jocheon substation on Jeju Island. The frequency regulation technology developed for the Jocheon demonstration facility then became the basis for the 28MW and 24MW frequency regulation ESS facilities installed in 2014 at the Seo-Anseong and Shin-Yongin substations, respectively. The operation control systems at these two facilities were continuously improved, and their successful commercialization led to the construction of additional ESS facilities all over Korea in 2015. In seven (7) locations nationwide (e.g., Shin-Gimje and Shin-Gyeryeong), a total of 184 MW of ESS had been commercialized in 2016. The trial run for the new ESS facilities had been completed between April and May in 2016. In this paper, results of the trial run from each of the ESS facilities are presented. The results obtained from the Seo-Anseong and Shin-Yongin substations during a transient event by a nuclear power plant trip are also presented in this paper. The results show that the frequency regulation battery ESS facilities were able to quickly respond to the transient event and trial run of ESS is necessary before it is commercialized.

Preparation of perovskite-based catalysts and fuel injection system for high durability of diesel reforming (디젤 개질을 위한 페로브스카이트 구조 촉매와 연료주입 시스템의 개발)

  • Rhee, Junki;Park, Sangsun;Shul, Yong-Gun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.115.2-115.2
    • /
    • 2010
  • Autothermal reforming(ATR) processes of hydrocarbon liquids such as diesel fuels are spotlighted as methods to produce hydrogen for Fuel cell. However, the use of heavy hydrocarbons as feedstocks for hydrogen production causes some problems which increase the catalyst deactivation by the carbon deposition. Coking can be inhibited by increasing the water dissociation on the catalyst surface. This results in catastrophic failure of whole system. Performance degradation of diesel autothermal reforming leads to increase of undesirable hydrocarbons at reformed gases and subsequently decrease the performance. In this study, perovskite-based catalysts were investigated as alternatives to substitute the noble metal catalyst for the ATR of diesel. The investigated perovskite structure was based on LaCrO3. and metals were added at the A-site to enhance oxygen ion mobility, transition metals were doped on the B-site to enhance the reformation. Substituted Lanthanum chromium perovskite were made by aqueous combustion synthesis, which can produce high surface area. And for the homogeneous fuel supply, we made ultrasonic injection system for reforming. We compared durability of evaporation system and ultrasonic system for fuel injection.

  • PDF