• Title/Summary/Keyword: New photosensitizers

Search Result 18, Processing Time 0.022 seconds

Highly Efficient and Stable Organic Photo-Sensitizers based on Triphenylamine with Multi-anchoring Chromophore for Dye-sensitized Solar Cells (트리페닐아민을 이용한 염료감응형 태양전지 고효율 염료합성)

  • Yang, Hyunsik;Jung, Daeyoung;Jung, Miran;Kim, Jaehong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.88.1-88.1
    • /
    • 2010
  • Organic dyes, because of their many advantages, such as high molar extinction coefficients, convenience of customized molecular design for desired photophysical and photochemical properties, inexpensiveness with no transition metals contained, and environment-friendliness, are suitable as photosensitizers for the Dye-sensitized Solar Cell (DSSC). The efficiency of DSSC based on metal-free organic dyes is known to be much lower than that of Ru dyes generally, but a high solar energy-to-electricity conversion efficiency of up to 8% in full sunlight has been achieved by Ito et al. using an indoline dye. This result suggests that smartly designed and synthesized metal-free organic dyes are also highly competitive candidates for photosensitizers of DSSCs with their advantages mentioned above. Recently, the performance of DSSC based on metal-free organic dyes has been remarkably improved by several groups. We had reported the novel organic dye with double electron acceptor chromophore, which was a new strategy to design an efficient photosensitizer for DSSC. To verify the strategy, we synthesized organic dyes whose geometries, electronic structures and optical properties were derived from preceding density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations. In this paper, we successfully synthesized the chromophore containing multi-acceptor push-pull system from triphenylamine with thiophene moieties as a bridge unit. Organic dyes with a single electron acceptor and double acceptor system were also synthesized for comparison purposes. The photovoltaic performances of these dyes were compared, and the recombination dark current curves and the incident photon-to-current (IPCE) efficiencies were also measured in order to characterize the effects of the multi-anchoring groups on the open-circuit voltage and the short-circuit current. In order to match specifications required for practical applications to be implemented outdoors, light soaking and thermal stability tests of these DSSCs, performed under $100mWcm^{-2}$ and $60^{\circ}C$ for 1000h.

  • PDF

Nucleic Acid Aptamers: New Methods for Selection, Stabilization, and Application in Biomedical Science

  • Kong, Hoon Young;Byun, Jonghoe
    • Biomolecules & Therapeutics
    • /
    • v.21 no.6
    • /
    • pp.423-434
    • /
    • 2013
  • The adoption of oligonucleotide aptamer is well on the rise, serving an ever increasing demand for versatility in biomedical field. Through the SELEX (Systematic Evolution of Ligands by EXponential enrichment), aptamer that can bind to specific target with high affinity and specificity can be obtained. Aptamers are single-stranded nucleic acid molecules that can fold into complex three-dimensional structures, forming binding pockets and clefts for the specific recognition and tight binding of any given molecular target. Recently, aptamers have attracted much attention because they not only have all of the advantages of antibodies, but also have unique merits such as thermal stability, ease of synthesis, reversibility, and little immunogenicity. The advent of novel technologies is revolutionizing aptamer applications. Aptamers can be easily modified by various chemical reactions to introduce functional groups and/or nucleotide extensions. They can also be conjugated to therapeutic molecules such as drugs, drug containing carriers, toxins, or photosensitizers. Here, we discuss new SELEX strategies and stabilization methods as well as applications in drug delivery and molecular imaging.

Synthesis and Application of New Ru(II) Complexes for Dye-Sensitized Nanocrystalline TiO2 Solar Cells

  • Seok, Won-K.;Gupta, A.K.;Roh, Seung-Jae;Lee, Won-Joo;Han, Sung-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.8
    • /
    • pp.1311-1316
    • /
    • 2007
  • To develop photo-sensitizers for dye-sensitized solar cells (DSCs) used in harvesting sunlight and transferring solar energy into electricity, we synthesize novel Ru(II) polypyridyl dyes and describe their characterization. We also investigate the photo-electrochemical properties of DSCs using these sensitizers. New dyes contain chromophore unit of dafo (4,5-diazafluoren-9-one) or phen-dione (1,10-phenanthroline-5,6-dione) instead of the nonchromophoric donor unit of thiocyanato ligand in cis-[RuII(dcbpy)2(NCS)2] (dcbpy = 4,4'-dicarboxy- 2,2'-bipyridine) coded as N3 dye. For example, the photovoltaic data of DSCs using [RuII(dcbpy)2(dafo)](CN)2 as a sensitizer show 6.85 mA/cm2, 0.70 V, 0.58 and 2.82% in short-circuit current (Jsc ), open-circuit voltage (Voc), fill factor (FF) and power conversion efficiency (Eff), which can be compared with those of 7.90 mA/ cm2, 0.70 V, 0.53 and 3.03% for N3 dye. With the same chelating ligand directly bonded to the Ru metal in the complex, the CN ligand increases the Jsc value by double, compared to the SCN ligand. The extra binding ability in these new dyes makes them more resistant against ligand loss and photo-induced isomerization within octahedral geometry.

The Synthetic Approaches to Modify Methyl (Pyro)pheophorbide a

  • Wang, Jin-Jun;Han, Guang-Fan;Lee, Jong-Cheol;Shim, Young-Key
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.178-181
    • /
    • 2002
  • Pyropheophorbide and pheophorbide-photosensitizers as chlorin analogues are promising new compounds for PDT because the chlorin analogues are activated with much longer red light at > 670nm and produce less long-term normal tissue phototoxicity than Photofrin. The various chlorin derivatives can be obtained by moditying peripheral substituted group among which meso-H, vinyl group and exocyclic ring are the most active positions. These characteristics prompted us to introduce various groups for constructing modified pyropheophorbide and pheophorbide a compounds. A stereospecific introduction of various double bonds at 3-position was performed to methylpheophorbide a to give a long hydrophobic moiety and cyclic derivatives. Chlorin-C$_{60}$ dyad and chlorin- $C_{60}$-porphyrin triad also were easily prepared by the reaction of terminal aldehyde of methyl pyropheophorbide a. For the reaction on meso $\delta$-position bromination and Vismeier formylation can occur. N,N-dimethylaminoacrolein also reacted on $\delta$-position and was cyclized to isobacteriochlorin, but other modification has not been succeeded. Exocyclic keto function was also modified to give purpurin derivatives, bicyclic and spiro compounds. In this presentation we report a series of modified pyropheophorbide and pheophorbide a derivatives.s.

  • PDF

Application of sickle red blood cells for targeted cancer therapy (항암치료를 위한 겸형적혈구의 응용)

  • Choe, Se-woon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.715-717
    • /
    • 2016
  • Conventional drug carriers such as liposomes, nanoparticles, polymer micelles, polymeric conjugate and lipid microemulsion for cancer chemotherapy shield normal tissues from toxic drugs to treat cancer cells in tumors. However, inaccurate tumor targeting uncontrolled drug release from the carriers and unwanted accumulation in healthy sites can limit treatment efficacy with current conventional drug carriers with insufficient concentrations of drugs in the tumors and unexpected side effects as a result. In this research, we examined the use of sickle red blood cells as a new drug carrier with novel tumor targeting and controlled release properties. Sickle red blood cells show natural tumor preferential accumulation without any manipulation and controlled drug release is possible using a hemolysis method with photosensitizers.

  • PDF

Photopolymerization Efficiency of Dental Resin Composites with Novel Liquid Amine Photoinitiators (액상 amine 광개시제에 따른 치과용 복합수지의 중합효율)

  • Sun, Gum-Ju
    • Journal of dental hygiene science
    • /
    • v.8 no.3
    • /
    • pp.109-115
    • /
    • 2008
  • Two t-amines, N,N-dimethylaniline (MA), N,N-dimethyl-p-toluidine (MPT), were investigated as new visible light amine initiators for a dental resin composite of UDMA in order to improve photopolymerization effect. Three t-amines mixed with three photosensitizers, camphorquinone(CQ), 1-phenyl-1,2-propane dione(PD) and diacetyl (DA), respectively. And then this mixtures are added to resin monomer, UDMA. Photopolymerization efficiency of UDMA was studied through the use of FT-IR absorption spectroscopy. The photopolymerization effect of amine initiators were compared with that of 4-(dimethylamino)ethyl methacrylate (AEM), the most widely used photoinitiator. The photopolymerization efficiency of UDMA containing the amine initiator increased with irradiation time. The relative polymerization efficiency containing the CQ photosensitizer increase was in the order: AEM < MPT < MA. And the relative polymerization efficiency containing the PD photosensitizer increase was in the order: MPT < AEM < MA. This result shows that MA is most efficient amine initiator with CQ and PD.

  • PDF

Donor-π-Acceptor Type Diphenylaminothiophenyl Anthracene-mediated Organic Photosensitizers for Dye-sensitized Solar Cells

  • Heo, Dong Uk;Kim, Sun Jae;Yoo, Beom Jin;Kim, Boeun;Ko, Min Jae;Cho, Min Ju;Choi, Dong Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1081-1088
    • /
    • 2013
  • Two new metal-free organic dyes bridged by anthracene-mediated ${\pi}$-conjugated moieties were successfully synthesized for use in a dye-sensitized solar cell (DSSC). A N,N-diphenylthiophen-2-amine unit in these dyes acts as an electron donor, while a (E)-2-cyano-3-(thiophen-2-yl)acrylic acid group acts as an electron acceptor and an anchoring group to the $TiO_2$ electrode. The photovoltaic properties of (E)-2-cyano-3-(5-((10-(5-(diphenylamino)thiophen-2-yl)anthracen-9-yl)ethynyl)thiophen-2-yl)acrylic acid (DPATAT) and (E)-2-cyano-3-(5'-((10-(5-(diphenylamino)thiophen-2-yl)anthracen-9-yl)ethynyl)-2,2'-bithiophen-5-yl)acrylic acid (DPATABT) were investigated to identify the effect of conjugation length between electron donor and acceptor on the DSSC performance. By introducing an anthracene moiety into the dye structure, together with a triple bond and thiophene moieties for fine-tuning of molecular configurations and for broadening the absorption spectra, the short-circuit photocurrent densities ($J_{sc}$), and open-circuit photovoltages ($V_{oc}$) of DSSCs were improved. The improvement of $J_{sc}$ in DSSC made of DPATABT might be attributed to much broader absorption spectrum and higher molecular extinction coefficient (${\varepsilon}$) in the visible wavelength range. The DPATABT-based DSSC showed the highest power conversion efficiency (PCE) of 3.34% (${\eta}_{max}$ = 3.70%) under AM 1.5 illumination ($100mWcm^{-2}$) in a photoactive area of $0.41cm^2$, with the $J_{sc}$ of $7.89mAcm^{-2}$, the $V_{oc}$ of 0.59 V, and the fill factor (FF) of 72%. In brief, the solar cell performance with DPATABT was found to be better than that of DPATAT-based DSSC.

Photodynamic Therapy induced Cell Death using ALA and 632nm Diode Laser in A549 Lung Cancer Cells (A549 폐암세포주에서 ALA와 632nm Diode Laser를 이용한 광역학치료 유도성 세포사)

  • Kim, Youn Seup;Park, Jae Seuk;Jee, Young Koo;Lee, Kye Young
    • Tuberculosis and Respiratory Diseases
    • /
    • v.56 no.2
    • /
    • pp.178-186
    • /
    • 2004
  • Background : Photodynamic therapy (PDT) is a new therapeutic method aimed at the selective destruction of cancer cells. The outcome is death of cancer cells through apoptosis or necrosis. The aim of this study was to investigate the characterization of PDT induced cell death in A549 lung cancer cells. Materials and methods : A549 cells were used as the lung cancer cell. 5 aminolevulinic acid (ALA) was used as the photosensitizer and a 632nm diode laser (Biolitec, Germany) as the light source. Cells were incubated with various concentrations of ALA. The 632nm diode laser was then administered for various laser irradiation times. The treated cells were incubated with 24, 48 and 72 hours. The cell viabilities were measured using the crystal violet assay and light microscopy. To observe the cell death mechanism after PDT, cells were observed under fluorescence microscopy after double staining with Hoechst 33342 and propium iodide after PDT. Results : In the crystal violet assay at 24 hours after PDT with a $3.2J/cm^2$ laser irradiation power, the cell viabilities were $89.56{\pm}4.11$, $87.67{\pm}5.48$, and $69.37{\pm}8.84$ with ALA concentrations of 10, 100, and $1mg/m{\ell}$, respectively. In crystal violet assay at 24 hours after PDT with $1mg/m{\ell}$ of ALA, the cell viabilities were $74{\pm}19.85$, $55{\pm}6.1$, and $49.06{\pm}16.64%$ with 1.6, 3.2 and $6.4J/cm^2$ laser irradiation powers, respectively. However, increasing the interval time after PDT did not change the cell viabilities. In the apoptosis assay, photodynamic therapy was inducing the apoptotic cell death. Conclusions : This study shows the apoptotic anticancer effect of photodynamic therapy in A549 lung cancer cells. However, further evaluations with other cancer cells and photosensitizers are necessary.