• Title/Summary/Keyword: New nuclear energy device

Search Result 24, Processing Time 0.019 seconds

Simulation of a neutron imaging detector prototype based on SiPM array readout

  • Mengjiao Tang;Lianjun Zhang;Bin Tang;Gaokui He;Chang Huang;Jiangbin Zhao;Yang Liu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3133-3139
    • /
    • 2023
  • Neutron imaging technology as a means of non-destructive detection of materials is complementary to X-ray imaging. Silicon photomultiplier (SiPM), a new type of optical readout device, has overcome some shortcomings of traditional photomultiplier tube (PMT), such as high-power consumption, large volume, high price, uneven gain response, and inability to work in strong magnetic fields. Its application in the field of neutron detection will be an irresistible general trend. In this paper, a thermal neutron imaging detector based on 6LiF/ZnS scintillation screen and SiPM array readout was developed. The design of the detector geometry was optimized by geant4 Monte Carlo simulation software. The optimized detector was evaluated with a step wedge sample. The results show that the detector prototype with a 48 mm × 48 mm sensitive area can achieve about 38% detection efficiency and 0.26 mm position resolution when using a 300 ㎛ thick 6LiF/ZnS scintillation screen and a 2 mm thick Bk7 optical guide coupled with SiPM array, and has good neutron imaging capability. It provides effective data support for developing high-performance imaging detectors applied to the China Spallation Neutron Source (CSNS).

Application and optimal design of the bionic guide vane to improve the safety serve performances of the reactor coolant pump

  • Liu, Haoran;Wang, Xiaofang;Lu, Yeming;Yan, Yongqi;Zhao, Wei;Wu, Xiaocui;Zhang, Zhigang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2491-2509
    • /
    • 2022
  • As an important device in the nuclear island, the nuclear coolant pump can continuously provide power for medium circulation. The vane is one of the stationary parts in the nuclear coolant pump, which is installed between the impeller and the casing. The shape of the vane plays a significant role in the pump's overall performance and stability which are the important indicators during the safety serve process. Hence, the bionic concept is firstly applied into the design process of the vane to improve the performance of the nuclear coolant pump. Taking the scaled high-performance hydraulic model (on a scale of 1:2.5) of the coolant pump as the reference, a united bionic design approach is proposed for the unique structure of the guide vane of the nuclear coolant pump. Then, a new optimization design platform is established to output the optimal bionic vane. Finally, the comparative results and the corresponding mechanism are analyzed. The conclusions can be gotten as: (1) four parameters are introduced to configure the shape of the bionic blade, the significance of each parameter is herein demonstrated; (2) the optimal bionic vane is successfully obtained by the optimization design platform, the efficiency performance and the head performance of which can be improved by 1.6% and 1.27% respectively; (3) when compared to the original vane, the optimized bionic vane can improve the inner flow characteristics, namely, it can reduce the flow loss and decrease the pressure pulsation amplitude; (4) through the mechanism analysis, it can be found out that the bionic structure can induce the spanwise velocity and the vortices, which can reduce drag and suppress the boundary layer separation.

An Experimental Evaluation on Human Error Hazards of Task using Digital Device (디지털 기기 기반 직무 수행 시 인적오류위험성에 대한 실험적 평가)

  • Oh, Yeon Ju;Jang, Tong Il;Lee, Yong Hee
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.1
    • /
    • pp.47-53
    • /
    • 2014
  • The application of advanced Main Control Room(MCR) is accompanied with lots of changes and different forms and features through the virtue of new digital technologies. The characteristics of these digital technologies and devices give many opportunities to the interface management, and can be integrated into a compact single workstation in advanced MCR so that workers can operate the plant with minimum physical burden under any operation conditions. However, these devices may introduce new types of human errors and thus a means to evaluate and prevent such errors is needed, especially those related to characteristics of digital devices. This paper reviewed the new type of human error hazards of tasks based on digital devices and surveyed researches on physiological assessment related to human error. An experiment was performed to verify human error hazards by physiological responses such as EEG which was measured to evaluate the cognitive workload of operators. And also, the performances of four tasks which are representative in human error hazard tasks based on digital devices were compared. Response time, ${\beta}$ power spectrum rate of each task by EEG, and mental workload by NASA-TLX were evaluated. In the results of the experiment, the rate of the ${\beta}$ power was increased in the task 1 and task 4 which are searching and navigating task and memory task of hierarchical information, respectively. In case of the mental workload, in most of evaluation items, task 1 and 4 were highly rated comparatively. In this paper, human error hazards might be identified by highly cognitive workload. Conclusively, it was concluded that the predictive method which is utilized in this paper and an experimental verification can be used to ensure the safety when applying the digital devices in Nuclear Power Plants (NPPs).

Evaluations of Hydrogen Embrittlement Behaviours on Dissimilar Welding Part of SDS Bottles (II) (삼중수소 저장용기 이종용접부의 수소취화 거동 평가 (II))

  • Cho, Kyoungwon;Choi, Jaeha;Jang, Minhyuk;Lee, Youngsang;Hong, Taewhan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.2
    • /
    • pp.120-126
    • /
    • 2015
  • Recently, the ever-increasing use of fossil fuels for rapid industrial development and population significantly caused an environment pollution and global warming such as climate change. So research and development of sustainable and eco-friendly energy have been performed. Especially the interest in nuclear fusion fuel was significantly increased from the developed countries. The system of fusion energy production was tritium separation, storage and delivery, and purification. Republic of Korea is in charge of Storage and Delivery System (SDS) in the International Thermonuclear Experimental Reactor (ITER). Welding part of the SDS bottles for storing the tritium is known to be susceptible to hydrogen embrittlement. In this study, conducted a study for the relaxation of the stability and hydrogen embrittlement of the weld area. The hydrogen heat treatment was processed through the Pressure-Composition-Temperature (PCT) device according to the time variation. Also mechanical properties such as impact test and hardness test according to using the alkaline cleaning liquid for hydrogen embrittlement relief and the fracture was observed by scanning electron microscopy (SEM) after the mechanical properties evaluation.

Evaluations of Hydrogen Embrittlement Behaviours on Dissimilar Welding Part of SDS Bottles (I) (삼중수소 저장용기 이종용접부의 수소취화 거동 평가 (I))

  • Cho, Kyoungwon;Choi, Jaeha;Jang, Minhyuk;Lee, Youngsang;Hong, Taewhan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.2
    • /
    • pp.114-119
    • /
    • 2015
  • Nowdays, fossil fuels have been used as an important resource in development of industry. But it is limited and caused climate change such as pollution and global warming. So nuclear fusion research is being issued with tritium to develop eco-friendly and sustainable energy. Republic of Korea is in charge of Storage and Delivery System (SDS) in the International Thermonuclear Experimental Reactor (ITER), weld present in the SDS bottles are easily exposed to the hydrogen embrittlement of special characteristics of the hydrogen in hydrogen atmosphere, When the hydrogen embrittlement is rapidly progresses, the cracking is generated in the weld zone. Due to this cracking, the risk of leakage of tritium into the atmosphere occurs. In this study, hydrogen heat treatment was processed through the Pressure-Composition-Temperature (PCT) device according to the time variation. Also mechanical properties such as rupture strength test, three point bend test and hardness test in accordance with the respective time have been conducted and the fracture was observed by scanning electron microscopy(SEM) after the mechanical properties evaluation.

Manufacture of the vol-oxidizer with a capacity of 20 kg HM/batch in $UO_2$ pellets using a design model (설계 모델을 이용한 $UO_2$ 펠릿 20 kg HM/batch용 분말화 장치 제작)

  • Kim Young-Hwan;Yoon Ji-Sup;Jung Jae-Hoo;Hong Dong-Hee;Uhm Jae-Beop
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.3
    • /
    • pp.255-263
    • /
    • 2006
  • Vol-oxidizer is a device to convert $UO_2$ pellets into $U_3O_8$ powder and to feed a homogeneous powder into a Metal Conversion Reactor in the ACP(Advanced Spent Fuel Conditioning Process). In this paper, we propose a design model of the vol-oxidizer, develop the new vol-oxidizer with a capacity of 20 kg HM/batch in $UO_2$ pellets, and conduct a verification for the device. Design considerations include the internal structure, the capacity, the heating position of the device, and the size. The dimensions of the new vol-oxidizer are decided by the design model. We determine a permeability test of the $U_3O_8$ measuring the temperature distribution, and the volume of $UO_2$ and $U_3O_8$. We manufactured the new vol-oxidizer for a 20 kg HM/batch in $UO_2$ pellets, and then analyzed the characteristics of the $U_3O_8$ powder for the verification. The experimental results show that the permeability of the $U_3O_8$ throughout mesh enhance more than old vol-oxidizer, the oxidation time takes only 8 hours when compared with the 13 hours of the old device, and the average distribution of particle size is $40{\mu}m$. The capacities of new vol-oxidizer for a 20 kg HM/batch in $UO_2$ pellets were agree well with the predictions of design model.

  • PDF

Development of Three-Dimensional Gamma-ray Camera (방사선원 3차원 위치탐지를 위한 방사선 영상장치 개발)

  • Lee, Nam-Ho;Hwang, Young-Gwan;Park, Soon-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.2
    • /
    • pp.486-492
    • /
    • 2015
  • Radiation source imaging system is essential for protecting of radiation leakage accidents and minimizing damages from the radioactive materials, and is expected to play an important role in the nuclear plant decommissioning area. In this study, the stereoscopic camera principle was applied to develop a new radiation imaging device technology that can extract the radiation three-dimensional position information. This radiation three-dimensional imaging device (K3-RIS) was designed as a compact structure consisting of a radiation sensor, a CCD camera, and a pan-tilt only. It features the acquisition of stereoscopic radiation images by position change control, high-resolution detection by continuous scan mode control, and stereoscopic image signal processing. The performance analysis test of K3-RIS was conducted for a gamma-ray source(Cs-137) in radiation calibration facility. The test result showed that a performance error with less than 3% regardless of distances of the objects.

Technical Tasks and Development Current Status of Organic Solar Cells (유기 태양전지의 개발 현황과 기술 과제)

  • Jang, Ji Geun;Park, Byung Min;Lim, Sungkyoo;Chang, Ho Jung
    • Korean Journal of Materials Research
    • /
    • v.24 no.8
    • /
    • pp.434-442
    • /
    • 2014
  • Serious environmental problems have been caused by the greenhouse effect due to carbon dioxide($CO_2$) or nitrogen oxides($NO_x$) generated by the use of fossil fuels, including oil and liquefied natural gas. Many countries, including our own, the United States, those of the European Union and other developed countries around the world; have shown growing interest in clean energy, and have been concentrating on the development of new energy-saving materials and devices. Typical non-fossil-fuel sources include solar cells, wind power, tidal power, nuclear power, and fuel cells. In particular, organic solar cells(OSCs) have relatively low power-conversion efficiency(PCE) in comparison with inorganic(silicon) based solar cells, compound semiconductor solar cells and the CIGS [$Cu(In_{1-x}Ga_x)Se_2$] thin film solar cells. Recently, organic cell efficiencies greater than 10 % have been obtained by means of the development of new organic semiconducting materials, which feature improvements in crystalline properties, as well as in the quantum-dot nano-structure of the active layers. In this paper, a brief overview of solar cells in general is presented. In particular, the current development status of the next-generation OSCs including their operation principle, device-manufacturing processes, and improvements in the PCE are described.

Seismic fragility assessment of isolated structures by using stochastic response database

  • Eem, Seung-Hyun;Jung, Hyung-Jo
    • Earthquakes and Structures
    • /
    • v.14 no.5
    • /
    • pp.389-398
    • /
    • 2018
  • The seismic isolation system makes a structure isolated from ground motions to protect the structure from seismic events. Seismic isolation techniques have been implemented in full-scale buildings and bridges because of their simplicity, economic effectiveness, inherent stability and reliability. As for the responses of an isolated structure due to seismic events, it is well known that the most uncertain aspects are the seismic loading itself and structural properties. Due to the randomness of earthquakes and uncertainty of structures, seismic response distributions of an isolated structure are needed when evaluating the seismic fragility assessment (or probabilistic seismic safety assessment) of an isolated structure. Seismic response time histories are useful and often essential elements in its design or evaluation stage. Thus, a large number of non-linear dynamic analyses should be performed to evaluate the seismic performance of an isolated structure. However, it is a monumental task to gather the design or evaluation information of the isolated structure from too many seismic analyses, which is impractical. In this paper, a new methodology that can evaluate the seismic fragility assessment of an isolated structure is proposed by using stochastic response database, which is a device that can estimate the seismic response distributions of an isolated structure without any seismic response analyses. The seismic fragility assessment of the isolated nuclear power plant is performed using the proposed methodology. The proposed methodology is able to evaluate the seismic performance of isolated structures effectively and reduce the computational efforts tremendously.

Analytical-numerical formula for estimating the characteristics of a cylindrical NaI(Tl) gamma-ray detector with a side-through hole

  • Thabet, Abouzeid A.;Badawi, Mohamed S.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3795-3802
    • /
    • 2022
  • NaI(Tl) scintillation materials are considered to be one of many materials that are used exclusively for γ-ray detection and spectroscopy. The gamma-ray spectrometer is not an easy-to-use device, and the accuracy of the numerical values must be carefully checked based on the rules of the calibration technique. Therefore, accurate information about the detection system and its effectiveness is of greater importance. The purpose of this study is to estimate, using an analytical-numerical formula (ANF), the purely geometric solid angle, geometric efficiency, and total efficiency of a cylindrical NaI(Tl) γ-ray detector with a side-through hole. This type of detector is ideal for scanning fuel rods and pipelines, as well as for performing radio-immunoassays. The study included the calculation of the complex solid angle, in combination with the use of various points like gamma sources, located axially and non-axially inside the through detector side hole, which can be applied in a hypothetical method for calibrating the facility. An extended γ-ray energy range, the detector, source dimensions, "source-to-detector" geometry inside the side-through hole, path lengths of γ-quanta photons crossing the facility, besides the photon average path length inside the detector medium itself, were studied and considered. This study is very important for an expanded future article where the radioactive point source can be replaced by a volume source located inside the side-trough hole of the detector, or by a radioactive pipeline passing through the well. The results provide a good and useful approach to a new generation of detectors that can be used for low-level radiation that needs to be measured efficiently.