• Title/Summary/Keyword: New electricity market design

Search Result 16, Processing Time 0.034 seconds

Electricity Market Design for the Incorporation of Various Demand-Side Resources in the Jeju Smart Grid Test-bed

  • Park, Man-Guen;Cho, Seong-Bin;Chung, Koo-Hyung;Moon, Kyeong-Seob;Roh, Jae-Hyung
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.1851-1863
    • /
    • 2014
  • Many countries are increasing their investments in smart grid technology to enhance energy efficiency, address climate change, and trigger a green energy revolution. In addition to these goals, Korea also seeks to promote national competitiveness, prepare for the growth of the renewable energy industry, and export industrialization through its strategic promotion of the smart grid. Given its inherent representativeness for Korean implementation of the smart grid and its growth potential, Jeju Island was selected by the Korean government as the site for smart grid testing in June 2009. This paper presents a new design for the electricity market and an operational scheme for testing Smart Electricity Services in the Jeju smart grid demonstration project. The Jeju smart grid test-bed electricity market is constructed on the basis of day-ahead and real-time markets to provide two-way electricity transaction environments. The experience of the test-bed market operation shows that the competitive electricity market can facilitate the smart grid deployment in Korea by allowing various demand side resources to be active market players.

Smart Grid and Its Implications for Electricity Market Design

  • Kim, Seon-Gu;Hur, Seong-Il;Chae, Yeoung-Jin
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • Recently, smart grid has been considered a very important new energy delivery technology, and one that can help ensure a cleaner environment by making use of information and communication technology (ICT) in countries around the world. The many technological benefits smart grid offers is expected to bring about a huge change in the electric energy supply chain. In particular, smart grid with advanced ICT is likely to allow market agents to participate in the decision-making process in the restructured electricity industry, easily facilitating Homeostatic Utility Control. In this paper, we examine smart grid as a market externality, and then illustrate issues from the commercial market perspective as it relates to electricity market design. Finally, our paper identifies some of the impacts of smart grid on electricity market design, which may possibly be incorporated into the evolution of the electricity market, thus ensuring market efficiency.

Analysis of Mechanism Design for the Optimal Bilateral Contract in the Competitive Electricity Market (경쟁적 전력시장에서의 적정 직거래 계약가격 설정에 관한 연구)

  • Chung, Koo-Hyung;Roh, Jae-Hyung;Cho, Ki-Seon;Kim, Hak-Man
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.3
    • /
    • pp.263-267
    • /
    • 2010
  • Although electricity market structures may be different from each country, they have a long-term forward market and a short-term spot market in general. Particularly, a bilateral contract transacted at a long-term forward market fixes the electricity price between a genco and a customer so that the customer can avoid risk due to price-spike in the spot market. The genco also can make an efficient risk-hedging strategy through the bilateral contract. In this paper, we propose a new mechanism for deriving the optimal bilateral contract price using game theory. This mechanism can make the customer reveal his true willingness to purchase so that an adequate bilateral contract price is derived.

Impact of Carbon Costs on Wholesale Electricity Market (탄소비용이 CBP전력시장에 미치는 영향)

  • Kim, Wook;Park, Jong-Bae;Lee, Joo-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.4
    • /
    • pp.700-706
    • /
    • 2010
  • Carbon costs, either in the form of a carbon tax or through permit prices in an emissions trading scheme, would ultimately be reflected in higher electricity prices. This price "pass-through" is very critical to the effective design of new policies to curb the amount of carbon emissions. This paper sets out in a structured way the factors that determine price pass-through and how carbon costs would impact on the electricity market and the existing coal-fired power plants. It is shown that pass-through can vary drastically if the underlying dispatch potential of generators varies significantly across alternative emissions reduction scenarios. It can also vary depending on the availability of competing cleaner forms of generation. Pass-through as a measure of business performance is therefore hard to generalize across different circumstances and should be interpreted carefully.

Development of Representative Curves for Classified Demand Patterns of the Electricity Customer

  • Yu, In-Hyeob;Lee, Jin-Ki;Ko, Jong-Min;Kim, Sun-Ic
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1379-1383
    • /
    • 2005
  • Introducing the market into the electricity industry lets the multiple participants get into new competition. These multiple participants of the market need new business strategies for providing value added services to customer. Therefore they need the accurate customer information about the electricity demand. Demand characteristic is the most important one for analyzing customer information. In this study load profile data, which can be collected through the Automatic Meter Reading System, are analyzed for getting demand patterns of customer. The load profile data include electricity demand in 15 minutes interval. An algorithm for clustering similar demand patterns is developed using the load profile data. As results of classification, customers are separated into several groups. And the representative curves for the groups are generated. The number of groups is automatically generated. And it depends on the threshold value for distance to separate groups. The demand characteristics of the groups are discussed. Also, the compositions of demand contracts and standard industrial classification in each group are presented. It is expected that the classified curves will be used for tariff design, load forecasting, load management and so on. Also it will be a good infrastructure for making a value added service related to electricity.

  • PDF

Conditions to Introduce the Renewable Portfolio Standards in Korea ($\cdot$재생에너지 의무비율할당제(Renewable Portfolio Standards) 국내도입시 고려사항에 관한 연구)

  • Chang, Han-Soo;Choi, Ki-Ryun;Kim, Su-Duk
    • Journal of Energy Engineering
    • /
    • v.14 no.2 s.42
    • /
    • pp.82-97
    • /
    • 2005
  • RPS (Renewable Portfolio Standards) is a policy tool to disseminate renewable energies through market mechanism. RPS promotes renewable power generation by obligating electricity market participants to deliver the required amount of electricity from renewable energies. To promote and encourage renewable energies, Korean government is considering to introduce RPS to domestic market in the near future. The purpose of this paper is to analyze the definition and market mechanism of RPS and to review key considerations in its design. In conclusion, we recommend some prerequisite in its introduction to Korea.

An Application of Unified Modeling Language to Develop the New Load Management System (새로운 부하관리시스템 개발을 위한 UML 적용 연구)

  • Lee, Chan-Joo;Kim, Jin-Ho;Park, Jong-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.419-421
    • /
    • 2002
  • This paper presents a methodology for the application of Unified Modeling Language (UML) to develop the new load management system. Development of new load management system in competitive electricity market is very complex since it requires too much data of power system. For the efficient and flexible design to develop of new load management system, a UML approach in applied which is composed of a class diagram, package diagram using Rational Rose Unified Process.

  • PDF

A New Approach to HVDC System Control for Damping SSO Using the Novel Eigenvalue Analysis Program

  • Kim, Dong-Joon;Nam, Hae-Kon;Moon, Young-Hwan
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.4
    • /
    • pp.178-191
    • /
    • 2004
  • This paper presents a new approach to HVDC system control for damping subsynchronous oscillation (SSO) involving HVDC converters and turbine generator shaft systems. This requires a novel eigenvalue analysis (NEA) program, derivation of HVDC system modeling considering steady-state conditions and dynamic conditions in the combined AC/DC system, and an appropriate control scheme. The method suggested makes possible the design of a subsynchronous oscillation damping controller (SODC) to provide positive damping torque for the range of torsional modes in combined AC/DC systems. There are three steps involved in the design of a SODC; first the worst torsional mode is determined using the NEA program, next the SODC parameters are designed for the range of that torsional mode, and then finally an off-line simultaneous time domain program such as PSCAD/EMTDC is used to verify the parameters of the SODC. The suggested SODC design method is applied to two AC/DC systems, and its practicality is verified using the PSCAD/EMTDC simulation program.

Design and Implementation of Ethereum-based Future Power Trading System (이더리움 기반의 선물(Future) 전력 거래 시스템 설계)

  • Youm, Sungkwan;Lee, Heekwon;Shin, Kwang-Seong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.584-585
    • /
    • 2021
  • As the production of new and renewable energy such as solar and wind power has diversified, microgrid systems that can simultaneously produce and consume have been introduced. In general, a decrease in electricity prices through solar power is expected in summer, so producer protection is required. In this paper, we propose a transparent and safe gift power transaction system between users using blockchain in a microgrid environment. A futures is simply a contract in which the buyer is obligated to buy electricity or the seller is obliged to sell electricity at a fixed price and a predetermined futures price. This system proposes a futures trading algorithm that searches for futures prices and concludes power transactions with automated operations without user intervention by using a smart contract, a reliable executable code within the blockchain network. If a power producer thinks that the price during the peak production period is likely to decrease during production planning, it sells futures first in the futures market and buys back futures during the peak production period to make a profit in the spot market. losses can be compensated. In addition, if there is a risk that the price of electricity will rise when a sales contract is concluded, a broker can compensate for a loss in the spot market by first buying futures in the futures market and liquidating futures when the sales contract is fulfilled.

  • PDF

FEED Framework Development for Designing Supercritical Carbon Dioxide Power Generation System (초임계 이산화탄소 발전시스템 설계를 위한 FEED(Front End Engineering Design) 프레임워크 개발)

  • Kim, Joon-Young;Cha, Jae-Min;Park, Sungho;Yeom, Choongsub
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.13 no.2
    • /
    • pp.65-74
    • /
    • 2017
  • Supercritical carbon dioxide power system is the next generation electricity technology expected to be highly developed. The power system can improve net efficiency, simplify cycle configuration, and downsize equipment compared to conventional steam power system. In order to dominate the new market in advance, it is required to found Front End Engineering Design (FEED) Framework of the system. Therefore, this study developed the FEED framework including design processes for the supercritical carbon dioxide power system, information elements for each process, and relationships for each element. The developed FEED framework is expected to be able to secure systematic technological capabilities by establishing a common understanding and perspective among multi-field engineers participating in the design.