• Title/Summary/Keyword: New design method

Search Result 6,773, Processing Time 0.041 seconds

Estimating the cooling effect of see breeze along canals and outdoor thermal comfort on urban heat load in summer (해풍(海風)을 이용한 하계(夏季) 도시열환경(都市熱環境)의 풍도(風道)계획과 인체의 쾌적성에 관한 연구)

  • Jeong, Chang-Won;Yoon, In;Choi, Young-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.1
    • /
    • pp.19-25
    • /
    • 1999
  • A new urban design method from the viewpoint of climate is considered to be desired for urban life. The authors verified on an environmental planning based on new urban design concept which introduced the effect of sea breeze blowing along canals. The field observation of urban thermal environment were carried out to examine the cooling effects of a river through city. The observations were conducted to find the effect of a sea breeze and climate in summer along canals. Effective distance from the sea and cooling effect of the sea breeze on urban temperature was analyzed. The thermal index using outdoor environment was modified with New Effective Temperature ET*. On the basis of the observation. Human thermal comfort is relieved and affected by sea breeze blowing along canals. The canals were utilized as the trail on which sea breeze blows towards the center of city. From these results, The wind trail is one of the effective passive design method from the viewpoint of urban climate.

  • PDF

New method environment for art design of nanocomposite brick facade of the building

  • Jie Xia;Gholamreza Soleimani Jafari;F. Ghoroughi
    • Steel and Composite Structures
    • /
    • v.51 no.5
    • /
    • pp.499-507
    • /
    • 2024
  • The paper delves into an emerging paradigm shift in architectural design, focusing on the development of a cutting-edge methodological framework for the artistic enhancement of nanocomposite brick facades in building construction. This innovative approach represents a fusion of art and science, harnessing the potential of advanced nanotechnology to redefine the aesthetic and functional properties of building exteriors. Central to this new methodology is the integration of state-of-the-art materials and fabrication techniques, aimed at not only elevating the visual appeal of architectural structures but also enhancing their structural robustness and environmental sustainability. By leveraging the unique characteristics of nanocomposite materials, the proposed method opens up new possibilities for pushing the boundaries of traditional brick facade design. Through a meticulous exploration of the intricacies involved in implementing this novel approach, the paper elucidates the transformative impact it can have on the architectural landscape. By marrying creativity with technical precision, the method environment for art design of nanocomposite brick facades promises to usher in a new era of sustainable, visually captivating, and structurally resilient building facades that are poised to redefine the very essence of architectural aesthetics.

An Optimal Design of High Space Factor BLDC Motor by Nonlinear Finite Element Method and Optimization Method (비선형 유한요소법과 최적화 기법을 이용한 고점적률 BLDC의 최적설계)

  • Oh, Seung-Kyun;Chung, Tae-Kyung;Jin, Yong-Sun
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.388-390
    • /
    • 1999
  • This paper discusses an optimal design of high space factor BLDC motor. Because of high space factor BLDC, Nonliear finite element method considering saturation of outer-rotor is used. For optimal design, a new niching genetic algorithm, namely "Restricted Competitions Selection" is used. This algorithm constructs an objective function using only the most important criteria and provides a designer with a set of solution rather than one solution. To verify its effectiveness, the new niching genetic algorithm is applied to an actual high space factor BLDC motor We show that a new designed high space factor BLDC motor is superior to the actual high space factor BLDC.

  • PDF

Development of an Optimization Technique for Robust Design of Mechanical Structures (기계 구조의 강건 설계를 위한 최적화 기법의 개발)

  • Jeong, Do-Hyeon;Lee, Byeong-Chae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.215-224
    • /
    • 2000
  • In order to reduce the variation effects of uncertainties in the engineering environments, new robust optimization method, which considers the uncertainties in design process, is proposed. Both design variables and system parameters are considered as random variables about their nominal values. To ensure the robustness of performance function, a new objective is set to minimize the variance of that function. Constraint variations are handled by introducing probability constraints. Probability constraints are solved by the advanced first order second moment (AFOSM) method based on the reliability theory. The proposed robust optimization method has an advantage that the second derivatives of the constraints are not required. The suggested method is examined by solving three examples and the results are compared with those for deterministic case and those available in literature.

A New Team Forming Method in Engineering Design Course

  • Kim, Jongwan
    • Journal of Multimedia Information System
    • /
    • v.4 no.4
    • /
    • pp.243-248
    • /
    • 2017
  • In a basic engineering design class, first year engineering department students learn about engineering design relevant theories and carry out simple projects in teams. By doing a group project in this subject, students develop basic skills such as creativity, teamwork, communication, and problem solving. Before, class proceeded in a way where teams were randomly configured in the beginning of semester and students began working on their project immediately. However, this research introduces a new method where at the beginning of the semester, students are assigned group assignments. Teammates are randomly chosen and constantly switched so that students get a chance to work with different people and experience diverse styles and characteristics. Then, they autonomously form into teams with people they work best and carry out their project. We present the behavior of a monkey robot that recognizes emotions as a case of applying the proposed method. The feedback from the students suggest that this proposed team forming method serves to be effective especially since students who were not aware of other students' characteristics can get to know one another better and form a productive team.

A New Method of the Global Interpolation in NURBS Surface: II (NURBS Surface Global Interpolation에 대한 한 방법: II)

  • 정형배
    • Korean Journal of Computational Design and Engineering
    • /
    • v.3 no.4
    • /
    • pp.243-250
    • /
    • 1998
  • In parametric surface interpolation, the choice of the parameter values to the set of scattered points makes a great deal of difference in the resulting surface. A new method is developed and tested for the parametrization in NURBS surface global interpolation. This method uses the parameter value at the maximal value of relevant rational basis function, to assign the parameter values to the arbitrary set of design data. This method gives us several important advantages in geometric modeling, the freedom of the selection of knot values, the feasible transformation of the data set to the matrix, the possibility of affinite transformation between the design data and generated surface, etc.

  • PDF

The Performance Analysis Method with New Pressure Loss and Leakage Flow Models of Regenerative Blower

  • Lee, Chan;Kil, Hyun Gwon;Kim, Kwang Yeong
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.4
    • /
    • pp.221-229
    • /
    • 2015
  • For efficient design process of regenerative blower, the present study provides new generalized pressure and leakage flow loss models, which can be used in the performance analysis method of regenerative blower. The present performance analysis on designed blower is made by incorporating momentum exchange theory between impellers and side channel with mean line analysis method, and its pressure loss and leakage flow models are generalized from the related fluid mechanics correlations which can be expressed in terms of blower design variables. The present performance analysis method is applied to four existing models for verifying its prediction accuracy, and the prediction and the test results agreed well within a few percentage of relative error. Furthermore, the present performance analysis method is also applied in developing a new blower used for fuel cell application, and the newly designed blower is manufactured and tested through chamber-type test facility. The performance prediction by the present method agreed well with the test result and also with the CFD simulation results. From the comparison results, the present performance analysis method is shown to be suitable for the actual design practice of regenerative blower.

A Study on the Base Material Specific and Processing Methods of Recycled New Materials in Space (실내공간에 사용되는 재활용 신재료의 소재 및 가공방법 연구)

  • Seo, Ji-Eun;Jeong, Hee-Jeong
    • Korean Institute of Interior Design Journal
    • /
    • v.21 no.3
    • /
    • pp.22-30
    • /
    • 2012
  • Nowadays the issue of environmental pollution and ecological destruction is not a simple issue but an important issue to be continuously considered. It is deemed that a study for recycled new materials is immediately required and this study is to analyze features and processing methods of new materials which can be used to interior space. We found the recycled new materials used for space through researching various web sits. And then we analyzed what the base materials are and classified that base materials are whether natural or artificial of the recycled materials. We classified processing methods of the recycled new materials after researching general processing methods. The result of this study would be an important material to the research and development of new finishing materials with consideration of environment and to the research for a guideline of applicable new materials. The results of this study are as follows : First, we could classify widely 2 categories into natural material and artificial material and then 10 subcategories into metal, glass, wood, rubber, stone, plastic, leather or fabric, ceramic, concrete and so on, and analyzed that which material is mostly used and whether it is single material or multiple material. In order to analyze the feature of processing method. Second, we could classify into 4 categories such as junction, surface process, molding, and insert, and found out which processing method is applied based on objects of research. Third, as an analysis result of the recycled new material feature, in order to develop various new materials, it is required to study on combination and application of 2 materials or more rather than single material. Four, as a analysis result of the processing method feature, I would like to suggest that development and application of various processing methods are required. Especially, it is necessary to grope for a way to develop new functional materials for interior space through a systemic research and analysis of processing method of other fields. Furthermore, a way to reuse recycled new materials should be considered in a stage of selection and application of processing method.

  • PDF

A framework for similarity recognition of CAD models

  • Zehtaban, Leila;Elazhary, Omar;Roller, Dieter
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.3
    • /
    • pp.274-285
    • /
    • 2016
  • A designer is mainly supported by two essential factors in design decisions. These two factors are intelligence and experience aiding the designer by predicting the interconnection between the required design parameters. Through classification of product data and similarity recognition between new and existing designs, it is partially possible to replace the required experience for an inexperienced designer. Given this context, the current paper addresses a framework for recognition and flexible retrieval of similar models in product design. The idea is to establish an infrastructure for transferring design as well as the required PLM (Product Lifecycle Management) know-how to the design phase of product development in order to reduce the design time. Furthermore, such a method can be applied as a brainstorming method for a new and creative product development as well. The proposed framework has been tested and benchmarked while showing promising results.