• Title/Summary/Keyword: New catalyst

Search Result 801, Processing Time 0.031 seconds

Hydrogen-bonded clusters in transformed Lewis acid to new Brønsted acid over WOx/SiO2 catalyst

  • Boonpai, Sirawat;Wannakao, Sippakorn;Panpranot, Joongjai;Praserthdam, Supareak;Chirawatkul, Prae;Praserthdam, Piyasan
    • Advances in nano research
    • /
    • v.12 no.3
    • /
    • pp.291-300
    • /
    • 2022
  • The behavior of hydrogen species on the surface of the catalyst during the Lewis acid transformation to form Brønsted acid sites over the spherical silica-supported WOx catalyst was investigated. To understand the structure-activity relationship of Lewis acid transformation and hydrogen bonding interactions, we explore the potential of using the in situ diffuse reflection infrared Fourier transform spectroscopy (DRIFTS) with adsorbed ammonia and hydrogen exposure. From the results of in situ DRIFTS measurements, Lewis acid sites on surface catalysts were transformed into new Brønsted acid sites upon hydrogen exposure. The adsorbed NH3 on Lewis acid sites migrated to Brønsted acid sites forming NH4+. The results show that the dissociated H atoms present on the catalyst surface formed new Si-OH hydroxyl species - the new Brønsted acid site. Besides, the isolated Si-O-W species is the key towards H-bond and Si-OH formation. Additionally, the H atoms adsorbed surrounding the Si-O-W species of mono-oxo O=WO4 and di-oxo (O=)2WO2 species, where the Si-O-W species are the main species presented on the Inc-SSP catalysts than that of the IWI-SSP catalysts.

Overview of the Effect of Catalyst Formulation and Exhaust Gas Compositions on Soot Oxidation In DPF

  • Choi Byung Chul;FOSTER D.E.
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.1-12
    • /
    • 2006
  • This work reviews the effects of catalyst formulation and exhaust gas composition on soot oxidation in CDPF (Catalytic Diesel Particulate Filter). DOC's (Diesel Oxidation Catalysts) have been loaded with Pt catalyst (Pt/$Al_{2}O_3$) for reduction of HC and CO. Recent CDPF's are coated with the Pt catalyst as well as additives like Mo, V, Ce, Co, Fe, La, Au, or Zr for the promotion of soot oxidation. Alkali (K, Na, Cs, Li) doping of metal catalyst tends to increase the activity of the catalysts in soot combustion. Effects of coexistence components are very important in the catalytic reaction of the soot. The soot oxidation rate of a few catalysts are improved by water vapor and NOx in the ambient. There are only a few reports available on the mechanism of the PM (particulate matter) oxidation on the catalysts. The mechanism of PM oxidation in the catalytic systems that meet new emission regulations of diesel engines has yet to be investigated. Future research will focus on catalysts that can not only oxidize PM at low temperature, but also reduce NOx, continuously self-cleaning diesel particulate filters, and selective catalysts for NOx reduction.

$CO_2$ reforming of $CH_4$ and growth of CNT on Ni catalyst (메탄의 이산화탄소 개질반응과 사용된 Ni 촉매 표면에서의 CNT 성장)

  • Kim, Hee-Yeon;Jeong, Nam-Ho;Song, Kwang-Sup
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.511-512
    • /
    • 2008
  • For the $CO_2$ reforming of $CH_4$, Ni catalyst was supported on La-hexaaluminate or on $\gamma$-$Al_2O_3$. The catalytic activities of Ni/La-hexaaluminate catalysts were measured at $700^{\circ}C$ using gas chromatography (GC) for 72 h, and the reaction was maintained up to 72 hfor the investigation of catalyst deactivation. The surface of each catalyst after 72 h reaction was investigated using SEM and TEM, and the composition of the carbon deposits was investigated by using EA, TPO and TGA. Ni/La-hexaaluminate shows higher resistance to coke deposition than conventional Ni/$Al_2O_3$ which seems to be due to strong interaction between Ni and the support material. As a result of the reforming reaction, various types of carbon deposits were created on catalyst surface and the amounts of them were much smaller in the case of La-hexaaluminate than on $Al_2O_3$.

  • PDF

Tar Reforming for Biomass Gasification by Ru/$Al_2O_3$ catalyst (Ru/$Al_2O_3$ 촉매를 이용한 바이오매스 타르 개질 특성)

  • Park, Yeong-Su;Kim, Woo-Hyun;Keel, Sang-In;Yun, Jin-Han;Min, Tai-Jin;Roh, Seon-Ah
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.247-250
    • /
    • 2008
  • Biomass gasification is a promising technology for producing a fuel gas which is useful for power generation systems. In biomass gasification processes, tar formation often causes some problems such as pipeline plugging. Thus, proper tar treatment is necessary. So far, nickel (Ni)-based catalysts have been intensively studied for the catalytic tar removal. However, the deactivation of Ni-based catalysts takes place because of coke deposition and sintering of Ni metal particles. To overcome these problems, we have been using ruthenium (Ru)-based catalyst for tar removal. It is reported by Okada et al., that a Ru/$Al_2O_3$ catalyst is very effective for preventing the carbon deposition during the steam reforming of hydrocarbons. Also, this catalyst is more active than the Ni-based catalyst at a low steam to carbon ratio (S/C). Benzene was used for the tar model compound because it is the main constituent of biomass tar and also because it represents a stable aromatic structure apparent in tar formed in biomass gasification processes. The steam reforming process transforms hydrocarbons into gaseous mixtures constituted of carbon dioxide ($CO_2$), carbon monoxide (CO), methane ($CH_4$) and hydrogen ($H_2$).

  • PDF

The effects of Nafion$^{(R)}$ ionomer content in dual catalyst layer on the performances of PEMFC MEAs

  • Kim, Kun-Ho;Jeon, Yoo-Taek
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.95.2-95.2
    • /
    • 2011
  • In order to achieve high performance and low cost for commercial applications, the development of membrane electrode assemblies (MEA), in which the electrochemical reactions actually occur, must be optimized. Expensive platinum is currently used as an electrochemical catalyst due to its high activity. Although various platinum alloys and non-platinum catalysts are under development, their stabilities and catalytic activities, especially in terms of the oxygen reduction (ORR), render them currently unsuitable for practical use. Therefore, it is important to decrease platinum loading by optimizing the catalysts and electrode microstructure. In this study, we prepared several different MEAs (non-uniform Nafion$^{(R)}$ ionomer loading electrode) which have dual catalyst layers to find the optimal Nafion$^{(R)}$ ionomer distribution in the electrodes. We changed Nafion$^{(R)}$ ionomer content in the layers to find the ideal composition of the binder and Pt/C in the electrode. For MEAs with various ionomer contents in the anodes and cathodes, the electrochemical activity (activation overpotential) and the mass transport properties (concentration overpotential) were analyzed and correlated with the single cell performance. The dual catalyst layers MEA showed higher cell performance than uniformly fabricated MEA, especially at the high current density region.

  • PDF

An investigation on anode electrocatalysts using grafting method for improvement of DMFC performances (Grafting 방법을 이용한 직접메탄올연료전지 애노드 촉매의 성능향상에 관한 연구)

  • Park, Jung-Bae;Han, Kook-Il;Kim, Ha-Suck
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.413-416
    • /
    • 2006
  • PtRu catalyst is most widely used as anode catalyst for a direct methanol fuel cell(DMFC). To promote the efficiency of the catalysts, it Is important to increase the triple phase boundary. In this study, we have tried to increase the triple phase boundaries in preparing electrocatalysts of the fuel cells, based on the process of grafting a proton-conducting agent onto the catalyst This grafted proton-conducting agent can act as an ionomer like Nafion, currently widely used ionomer. First, we have prepared the 80wt% PtRu/Ketjen Black electrocatalyst by an improved colloidal method. And, we have grafted methylsulfonate groups $(-CH_2SO_3H)$ into the catalyst as proton-conducting agents. As results of cyclic voltammety and single cell test of the membrane electrode assembly (MEA), we can conclude that the activity of the grafted electrocatalysts is superior to that of conventional ones, in performance of DMFCs. For our further study, we will investigate the optimum ratio of catalyst/grafted proton conduct Ing agent with maximum performance of a DMFC.

  • PDF

Advances of Isomerizing-hydrogenating Properties of CoMo Catalysts Supported on ASA-Al2O3

  • Avdeenko, E.A.;Nadeina, K.A.;Larina, T.V.;Pakharukova, V.P.;Gerasimov, E.Yu.;Prosvirin, I.P.;Gabrienko, A.A.;Vatutina, Yu.V.;Klimov, O.V.;Noskov, A.S.
    • Journal of the Korean Chemical Society
    • /
    • v.66 no.5
    • /
    • pp.349-361
    • /
    • 2022
  • Because hydrotreating (HDT) of FCC gasoline is one of the important processes used to prepare such gasoline for blending, the development of a catalyst for this process is of great interest. Currently, the industrial HDT of FCC gasoline consists of two stages and the creation of a new catalyst for one-stage HDT will make this process more efficient. Recently, our group has developed the CoMo/Al2O3-ASA catalyst and studied the influence of Si/Al ratio on the target reactions of HDT process. Despite the high selectivity and activity, the catalyst with ASA is not applicable in industry because of its low strength. The present work moves forward to study the influence of the ASA content in the catalyst support and clarify the possibility to develop the catalyst that combines high activity and selectivity in HDT reactions with successful performance. Here we show that the CoMo catalyst with ASA/Al2O3 molar ratio 1/1 in the support is the best combination for FCC gasoline hydrotreatment due to exceptional properties of the catalyst composition.

Methodology for removing unreacted low-hydrocarbons in diesel reformate for stable operation of solid oxide fuel cells (안정적인 SOFC 운전을 위한 디젤 개질기 내 미반응 저탄화수소 제거법)

  • Yoon, Sang-Ho;Bae, Joong-Myeon;Lee, Sang-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.773-776
    • /
    • 2009
  • In this paper, new concept of the diesel fuel processing is introduced for the stable operation of solid oxide fuel cells (SOFCs). Heavier hydrocarbons than $CH_4$, such as ethylene, ethane, propane, and etc., induce the carbon deposition on anode of SOFCs. In the reformate of heavy hydrocarbons (diesel, gasoline, kerosene, and JP-8), concentration of ethylene is usually higher than low hydrocarbons such as ethane, propane, and butane. So, removal of low hydrocarbons (over C1-hydrocarbons), especially ethylene, at the reformate gases is important for stable operation of SOFCs. New methodology as named "post-reformer" is introduced for removing the low hydrocarbons at the reformate gas stream. Catalyst of the NECS-PR4 is selected for post-reforming catalyst because the catalyst of NECS-PR4 shows the high selectivity for removing low hydrocarbons and achieving the high reforming efficiency. The diesel reformer and post-reformer are continuously operated for about 200 hours as integrated mode. The reforming performance is not degraded and low hydrocarbons in the diesel reformate are completely removed.

  • PDF

Model Experiment of Hydrogen Burner Utilizing Platinum Catalyst (백금 촉매를 이용한 수소버너의 모델 실험)

  • Ahn, Yeong Seok;Kim, Jin Won;Kim, Tae Young;Kim, Po Cheon;Oh, Byeong Soo;Ryu, Min Woong
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.14 no.2
    • /
    • pp.177-186
    • /
    • 2003
  • Today, human beings are faced with crisis of environmental pollution and fuel exhaustion because energy consumption has increased rapidly as a rise in population, therefore human beings are in need of hydrogen energy as a substitute energy. Hydrogen has the advantages of cleanness and boundlessness, but it has difficulties of storage and safety. Making a nameless hydrogen burner for household in consideration of hydrogen's peculiarity was tried. This hydrogen burner utilized the heat of reaction that was emitted when water was formed by reaction of hydrogen and oxygen, It was tried to impregnate Pt catalyst in ceramic fiber(substrate) for the reaction of hydrogen and oxygen to be reacted more easily. This experiment was inquired that hydrogen is appropriate for being used as burner fuel in home and found out whether its safe usefulness is possible or not.

Selective Growth of Carbon Nanotubes using Two-step Etch Scheme for Semiconductor Via Interconnects

  • Lee, Sun-Woo;Na, Sang-Yeob
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.280-283
    • /
    • 2011
  • In the present work, a new approach is proposed for via interconnects of semiconductor devices, where multi-wall carbon nanotubes (MWCNTs) are used instead of conventional metals. In order to implement a selective growth of carbon nanotubes (CNTs) for via interconnect, the buried catalyst method is selected which is the most compatible with semiconductor processes. The cobalt catalyst for CNT growth is pre-deposited before via hole patterning, and to achieve the via etch stop on the thin catalyst layer (ca. 3nm), a novel 2-step etch scheme is designed; the first step is a conventional oxide etch while the second step chemically etches the silicon nitride layer to lower the damage of the catalyst layer. The results show that the 2-step etch scheme is a feasible candidate for the realization of CNT interconnects in conventional semiconductor devices.